Sangaku Journal of Mathematics (SJM) ©SJM
ISSN 2534-9562
Volume 7 (2023), pp. 71-144
Received 14 September 2023 Published on-line 15 Nov. 2023
web: http://www.sangaku-journal.com/
(C)The Author(s) This article is published with open access. ${ }^{\dagger}$

Properties of Ajima Circles

Stanley Rabinowitz ${ }^{a}$ and Ercole Suppa ${ }^{b}$
${ }^{a} 545$ Elm St Unit 1, Milford, New Hampshire 03055, USA
e-mail: stan.rabinowitz@comcast.net ${ }^{2}$
web: http://www.StanleyRabinowitz.com/
${ }^{b}$ Via B. Croce 54, 64100 Teramo, Italia
e-mail: ercolesuppa@gmail.com web: http://www.esuppa.it/

Abstract. We study properties of certain circles associated with a triangle. Each circle is inside the triangle, tangent to two sides of the triangle, and externally tangent to the arc of a circle erected internally on the third side.

Keywords. Apollonius circle, Gergonne point, tangent circles.
Mathematics Subject Classification (2020). 51-02, 51M04.

1. Introduction

The following figure appears in a Sangaku described in [14] and reprinted in [21].

Figure 1. Sangaku configuration
In this figure, the semicircle erected inwardly on side $B C$ is named ω_{a}. Semicircles ω_{b} and ω_{c} are defined similarly. The circle inside $\triangle A B C$, tangent to sides $A B$ and $A C$, and externally tangent to semicircle ω_{a} is named γ_{a}. Circles γ_{b} and γ_{c}

[^0]are defined similarly. The sangaku gave a relationship involving the radii of the three circles.
Additional properties of this configuration were given in [29] and 30]. For example, in Figure 2 (left), the three blue common tangents are all congruent. Their common length is $2 r$, twice the inradius of $\triangle A B C$. In Figure 2 (right), the six touch points lie on a circle with center I, the incenter of $\triangle A B C$.

Figure 2. properties
It is the purpose of this paper to present properties of circles such as γ_{a} and also to generalize these results by replacing the semicircles with arcs having the same angular measure.

2. Properties of ω_{a} And γ_{a}

In this section we will discuss properties of the configuration shown in Figure 3 in which ω_{a} is any circle passing through vertices B and C of $\triangle A B C$. The circle γ_{a} is inside $\triangle A B C$, tangent to sides $A B$ and $A C$ and tangent to ω_{a} at T. This circle is sometimes known in the literature as an Ajima circle [10.

Figure 3. The configuration we are studying
An Ajima circle of a triangle is a circle (γ) that is tangent to two sides of the triangle and also tangent to a circle (ω) passing through the endpoints of the third side. In this paper, we are primarily interested in Ajima circles that lie inside the triangle and for which γ and ω are externally tangent as shown in Figure 3.

Occasionally, we will generalize a result and present a theorem in which γ_{a} is any circle tangent to $A B$ and $A C$ (not necessarily tangent to ω_{a}). To help the reader recognize when a result applies to an Ajima circle, we will color all Ajima circles yellow.

The standard notation related to our configuration that we use throughout this paper is shown in the following table.

Standard Notation	
Symbol	Description
a, b, c	lengths of sides of $\triangle A B C$
ω_{a}	circle through points B and C
γ_{a}	Ajima circle inscribed in $\angle B A C$ tangent to ω_{a}
D	center of γ_{a}
T	Unless specified otherwise, T is the point where γ_{a} touches ω_{a}.
O_{a}	center of ω_{a}
I	incenter of $\triangle A B C$
r	inradius of $\triangle A B C$
R	circumradius of $\triangle A B C$
p	semiperimeter of $\triangle A B C=(a+b+c) / 2$
Δ	area of $\triangle A B C$
S	twice the area of $\triangle A B C$ (i.e. $2 \Delta)$
G_{e}	Gergonne point of $\triangle A B C$
θ	angular measure of arc $\widehat{B T C}$

Without loss of generality, we will assume $A B<A C$.
We will survey some known results and give some new properties of this configuration.
The following result is due to Protasov [23]. Proofs can be found in [3] and [1, pp. 90-94].
Theorem 2.1 (Protasov's Theorem). The segment TI bisects $\angle B T C$ (Figure 4).

Figure 4. TI bisects $\angle B T C$

The following result comes from [34].
Lemma 2.2. Let Γ and Ω be two circles that are externally tangent at T. Let B and C be points on Ω and let $B U$ and $C V$ be tangents to Γ as shown in Figure 5 . Then

$$
\frac{B U}{C V}=\frac{B T}{C T} .
$$

Figure 5. $B U / C V=B T / C T$

Proof. Let $B T$ meet Γ at Q and let $C T$ meet Γ at P. Let $X Y$ be the tangent to both circles at T (Figure 6).

Figure 6.
We have

$$
\angle T P Q=\frac{1}{2} \widehat{Q T}=\angle Y T Q=\angle X T B=\frac{1}{2} \widehat{B T}=\angle T C B
$$

Since $\angle Q T P=\angle B T C$, we find that $\triangle P Q T \sim \triangle C B T$. Thus,

$$
\frac{B T}{Q T}=\frac{C T}{P T}
$$

which implies

$$
\frac{B T}{B Q}=\frac{C T}{C P} \quad \text { or } \quad \frac{B Q}{C P}=\frac{B T}{C T}
$$

Since $B U$ and $C V$ are tangents, we have $(B U)^{2}=B T \cdot B Q$ and $(C V)^{2}=C T \cdot C P$.
Combining, we get

$$
\frac{(B U)^{2}}{(C V)^{2}}=\frac{B T \cdot B Q}{C T \cdot C P}=\left(\frac{B T}{C T}\right)\left(\frac{B Q}{C P}\right)=\left(\frac{B T}{C T}\right)\left(\frac{B T}{C T}\right)=\frac{(B T)^{2}}{(C T)^{2}}
$$

which implies $B U / C V=B T / C T$.
Theorem 2.3. Let γ_{a} touch $A B$ and $A C$ at F and E, respectively. Let $T I$ meet $B C$ at Z (Figure 7). Then

$$
\frac{B F}{C E}=\frac{B Z}{C Z}
$$

Figure 7. $B F / C E=B Z / C Z$
Proof. By Lemma 2.2, $B F / C E=B T / C T$. By Protasov's Theorem, $T I$ bisects $\angle B T C$. Since $T Z$ is an angle bisector of $\triangle B T C$, we have $B T / T C=B Z / C Z$. Hence $B F / C E=B T / C T=B Z / C Z$.

The following result comes from [39]. A nice geometric proof can be found in [3]. See also [22].
Theorem 2.4 (The Catalytic Lemma). Let E be the point where γ_{a} touches $A C$. Then E, T, I, and C are concyclic (Figure 8).

Figure 8. E, T, I, C are concyclic

Theorem 2.5. Let E be the point where γ_{a} touches $A C$. Then $\angle B T C=2 \angle I E C$ (Figure 9).

Figure 9. blue angle is twice green angle
Proof. By the Catalytic Lemma, E, T, I, and C are concyclic (Figure 10). By Protasov's Theorem, $T I$ bisects $\angle B T C$, so $\angle B T C=2 \angle I T C$. But $\angle I T C=$ $\angle I E C$ because both angles subtend the same arc $\overparen{I C}$.

Figure 10. green angles are equal

The following result comes from [3].
Theorem 2.6. Let the touch points of circle γ_{a} with $A C$ and $A B$ be E and F, respectively. Suppose ω_{a} meets $A C$ at J between A and C. Let X be the center of the excircle of $\triangle B J C$ opposite C. Then X, F, and E are collinear (Figure 11).

Figure 11. X, F, and E are collinear
The following result comes from [32].

Theorem 2.7. The perpendicular bisector of $B C$ meets ω_{a} on the opposite side from T at N as shown in Figure 12, Then T, I, and N are collinear.

Figure 12.
Proof. From Protasov's Theorem, $T I$ bisects $\angle B T C$. Thus, $T I$ intersects the arc $\overparen{B C}$ (not containing T) at its midpoint. This midpoint lies on the perpendicular bisector of $B C$ and we are done.

Note. This theorem provides a nice method for constructing γ_{a}. First construct N as the intersection of the perpendicular bisector of $B C$ with ω_{a}. Then construct T as the intersection of $N I$ with ω_{a}. Finally, the center of γ_{a} is found as the intersection of the line joining the center of ω_{a} and T with $A I$.
Corollary 2.8. We have $\angle N B C=\angle B C N$.
The following result is suggested by [17].
Theorem 2.9. Let N be the midpoint of arc $\widehat{B C}$ opposite T. Let E be the point where γ_{a} touches side $A C$ (Figure 13). Let J be the point where ω_{a} meets $A C$. Then IE $\| N J$.

Figure 13. blue lines are parallel
Proof. By Theorem 2.5, $\angle I E C$ is half of $\angle B T C$. But half of $\angle B T C$ is equal to $\angle N T C$ and $\angle N T C=\angle N J C$ because both angles are inscribed in arc $\overparen{N C}$. Thus, $\angle I E C=\angle N J C$ which makes $I E \| N J$.

The following result comes from 31.
Theorem 2.10. Let ω_{a} meet $A C$ at J and let the line through I parallel to BJ meet $A C$ at F. Let E be the point where γ_{a} touches $A C$. Then $I F=F E$ (Figure 14).

Figure 14. blue segments are congruent
Proof. Let TI meet ω_{a} again at N. By Theorem 2.9, $N J \| I E$ (Figure 15). Thus

Figure 15.
$\angle 3=\angle 1$. But $\angle 1=\angle 2$ since both subtend arc $\overparen{N C}$ in circle ω_{a}. Hence,
(1)

$$
\angle 3=\angle 2 \text {. }
$$

By Corollary 2.8, we have $\angle 2=\angle 6$. But $\angle 6=\angle 4$ since both subtend arc $\widehat{B N}$. Thus,

$$
\begin{equation*}
\angle 2=\angle 4 . \tag{2}
\end{equation*}
$$

Since $I E \| N J$ and $I F \| B J$, we can conclude that

$$
\begin{equation*}
\angle 4=\angle 5 . \tag{3}
\end{equation*}
$$

Combining equations (1), (2), and (3), we find that

$$
\angle 3=\angle 2=\angle 4=\angle 5,
$$

so $\angle 3=\angle 5$. Thus, $\triangle F I E$ is isosceles with $I F=F E$.
For other proofs, see [4] and 5].
This theorem provides another simple way to construct circle γ_{a}. Draw the line through I parallel to $B J$ to get point F where this line meets $A C$. With center F, draw a circle with radius $F I$. Let this circle meet $A C$ (nearer A) at point E. This is the touch point for circle γ_{a}. Erect a perpendicular at E to $A C$. This perpendicular meets $A I$ at the center of γ_{a}.
Theorem 2.11. Let T be any point on arc $\widehat{B C}$. Let F be the foot of the perpendicular from T to $B C$ (Figure 16). Then $\angle B T F=\angle O_{a} T C$.

Figure 16. green angles are equal

Proof. Let G be the foot of the perpendicular from O_{a} to $T C$. Since $\angle C B T$ is measured by half the measure of $\widehat{T C}$ and $\angle T O_{a} C$ equals the measure of $\overparen{T C}$, we have

$$
\angle F B T=\frac{1}{2} \angle C O_{a} T=\angle G O_{a} T
$$

Complements of equal angles are equal, so $\angle B T F=\angle O_{a} T C$.

Theorem 2.12. Let M be the midpoint of $B C$ (Figure 17). Then $\angle M O_{a} T=$ $2 \angle I T O_{a}$.

Figure 17. blue angle = twice green angle

Proof. Let F be the foot of the perpendicular from T to $B C$. By Theorem [2.11, $\angle 1=\angle 2$ in the figure to the right.
By Protasov's Theorem, $\angle B T I=\angle I T C$. Therefore $\angle F T I=\angle I T O_{a}$ or

$$
\angle I T O_{a}=\frac{1}{2} \angle F T O_{a}=\frac{1}{2} \angle M O_{a} T
$$

since $T F \| M O_{a}$.
Hence, $\angle M O_{a} T=2 \angle I T O_{a}$.

Theorem 2.13. Let IT meet γ_{a} again at T^{\prime} (Figure 18). Then $T^{\prime} D \perp B C$.

Figure 18. $T^{\prime} D \perp B C$
The following proof is due to Biro Istvan.

Proof. Since γ_{a} and ω_{a} are tangent at T, this means D, T, and O_{a} are collinear. Since I, T, and T^{\prime} are also collinear, we find $\angle T^{\prime} T D=\angle I T O_{a}$. Extend $T I$ until it meets ω_{a} again at N (Figure 19).

Figure 19.
By Theorem 2.7, $N O_{a} \perp B C$. Base angles of an isosceles triangle are equal and vertical angles are equal, so $\angle D T^{\prime} T=\angle T^{\prime} T D=\angle I T O_{a}=\angle O_{a} N T$. So $T^{\prime} D \| O_{a} N$ because $\angle D T^{\prime} N=\angle O_{a} N T$. Thus, $T^{\prime} D \perp B C$.
Theorem 2.14. Let IT meet γ_{a} again at T^{\prime}. Let E be the point where γ_{a} touches side $A C$ (Figure 20). Then $\angle E D T^{\prime}=\angle A C B$.

Figure 20. green angles are equal

Proof. Let $D T^{\prime}$ meet $A C$ at T_{1} and let $D T^{\prime}$ meet $B C$ at T_{2}. By Theorem 2.13. $T_{1} T_{2} \perp B C$. From right triangles $T_{1} E D$ and $C T_{2} T_{1}$, we see that $\angle E D T^{\prime}=\angle A C B$ since they are both complementary to $\angle T_{2} T_{1} C$.

3. Properties Related to the Incircle

In this section, we will discuss properties of Ajima circles that are related to the incircle. As before, I will denote the incenter of $\triangle A B C$. Obviously, $I L \perp B C$.
Throughout this section, points will be labeled as shown in Figure 21 and described in the following table.

Figure 21. basic configuration plus incircle

Notation for this Section	
Symbol	Description
I	incenter of $\triangle A B C$
D	center of γ_{a}
T	Unless specified otherwise, T is the point where γ_{a} touches ω_{a}.
L	point where incircle touches $B C$
L^{\prime}	point closer to L where $A L$ meets γ_{a}
X	point closer to A where $A L$ meets γ_{a}
Y	point where $A T$ meets γ_{a} again
Y^{\prime}	point where $A T$ meets the incircle

Theorem 3.1. Let γ_{a} be any circle inscribed in $\angle B A C$. Let $A L$ meet γ_{a} at L^{\prime} (closer to L). Let D be the center of γ_{a}. Then $D L^{\prime} \perp B C$ (Figure 22).

Figure 22. $D L^{\prime} \perp B C$

Proof. The incircle and circle γ_{a} are homothetic with A being the center of the homothety. This homothety maps D to I and maps L^{\prime} to L. Since a homothety maps lines into parallel lines, we can conclude that $D L^{\prime} \| I L$. Since $I L \perp B C$, we therefore have $D L^{\prime} \perp B C$.

Theorem 3.2. Let γ_{a} be any circle inscribed in $\angle B A C$. Let $A L$ meet γ_{a} at L^{\prime} (closer to L). Then the tangent to γ_{a} at L^{\prime} is parallel to BC (Figure 23).

Figure 23. blue tangent is parallel to $B C$
Proof. The tangent at L^{\prime} is perpendicular to $D L^{\prime}$ (Figure 22) which is also perpendicular to $B C$ by Theorem 3.1.
Theorem 3.3. Let γ_{a} be any circle inscribed in $\angle B A C$. Let D be the center of γ_{a}. Let T be any point on γ_{a}. Let $A L$ meet γ_{a} at L^{\prime} (closer to L). Let AT meet γ_{a} at Y and Y^{\prime} with Y closer to A. Let $A T$ extended meet the incircle again at T^{\prime} (Figure 24). Then $Y L^{\prime}\left\|Y^{\prime} L, L^{\prime} T\right\| L T^{\prime}$, and $Y D \| Y^{\prime} I$.

Figure 24. blue lines are parallel
Proof. The incircle and circle γ_{a} are homothetic with A being the center of the homothety. This homothety maps D to I, L^{\prime} to L, Y to Y^{\prime}, and T to T^{\prime}. These results then follow because a homothety maps a line into a parallel line.

Theorem 3.4. We have $\angle X T L^{\prime}=\angle X L B$ (Figure 25).

Figure 25. green angles are equal

Proof. This is a special case of the following more general theorem.
Theorem 3.5. Let T be any point on γ_{a}, on the opposite side of $A L$ from B. Let $A L$ meet γ_{a} at X and L^{\prime} (with X nearer A). Then $\angle X T L^{\prime}=\angle X L B$.

Proof. Let $L^{\prime} Z$ be the tangent to γ_{a} at L^{\prime} as shown in Figure 26 .

Figure 26. green angles are equal
From Theorem 3.2, $L^{\prime} Z \| L B$, so $\angle A L^{\prime} Z=\angle A L B$. But $\angle X T L^{\prime}=\angle X L^{\prime} Z$ since both are measured by half of arc $\widehat{X L^{\prime}}$. Thus $\angle X T L^{\prime}=\angle A L B=\angle X L B$.

Theorem 3.6. Let γ_{a} be any circle inscribed in $\angle B A C$. Let T be any point on γ_{a}, on the opposite side of $A L$ from B. Let $A L$ meet γ_{a} at X and L^{\prime} (with X nearer A) as shown in Figure 27. Let $T L^{\prime}$ meet $C B$ at K. Then X, T, L, and K are concyclic.

Figure 27. X, T, L, K lie on a circle.
Proof. From Theorem 3.5, $\angle X T L^{\prime}=\angle X L B$, or equivalently, $\angle X T K=\angle X L K$. Thus, X, T, L, and K are concyclic.

The next five results have been suggested by Navid Safaei.
Lemma 3.7. Let N be the midpoint of arc $\widehat{B C}$ of a circle. Let T be a point on $\operatorname{arc} \overparen{B N}$. Then $T N$ is the external angle bisector of $\angle B T C$ (Figure 28).

Figure 28.

Proof. Using properties of angles inscribed in a circle, we have

$$
\angle N T U=\frac{1}{2}(\widehat{B T}+\overparen{T N})=\frac{1}{2} \widehat{B N}=\frac{1}{2} \widehat{C N}=\angle C T N
$$

so $T N$ bisects $\angle C T U$.

Lemma 3.8. Let N be the midpoint of arc $\widehat{B C}$ of ω_{a}. Then L^{\prime}, T, and N are collinear (Figure 29).

Figure 29.
Proof. Note that T is the center of a homothety between γ_{a} and ω_{a}. Since the tangents at L^{\prime} and N are parallel to $B C$ (by Theorem 3.2), this means that they are corresponding points of the homothety and hence $L^{\prime} N$ passes through the center of the homothety, T.

Theorem 3.9. The line $T L^{\prime}$ is the exterior angle bisector of $\angle B T C$ in $\triangle B T C$. (Figure 30).

Figure 30. $T L^{\prime}$ bisects $\angle C^{\prime} T B$
Proof. This follows immediately from Lemmas 3.7 and 3.8 .

Theorem 3.10. Let E and F be the points where γ_{a} touches $A C$ and $A B$, respectively. Then $E F, T L^{\prime}$, and $C B$ are concurrent.

Figure 31. Blue lines are concurrent.
Proof. Let $E F$ meet $C B$ at K. From Theorem 2.3, we have

$$
\begin{equation*}
\frac{B T}{C T}=\frac{B F}{C E} \tag{4}
\end{equation*}
$$

By Menelaus' Theorem applied to $\triangle A B C$
and the transversal $F E$, we have

$$
\frac{B F}{F A} \cdot \frac{A E}{E C} \cdot \frac{C K}{K B}=-1
$$

from which we get

$$
\begin{equation*}
\frac{B F}{C E}=\frac{K B}{C K} \tag{5}
\end{equation*}
$$

because $F A=A E$. From equations (4) and (5) we get

$$
\begin{equation*}
\frac{K B}{C K}=\frac{B F}{C E}=\frac{B T}{C T} \tag{6}
\end{equation*}
$$

Hence (by a property of external angle bisectors), $T K$ is the external angle bisector of $\angle B T C$ in $\triangle B T C$. Let N be the midpoint of arc $\widehat{B C}$ as shown in the figure above. By Lemma 3.7, $T N$ is also the external angle bisector of $\angle B T C$. It follows that N, T, and K are collinear. Since $T K$ passes through both L^{\prime} and N (by Lemma 3.8), the four points, K, L^{\prime}, T, and N lie on a line, so $E F, T L^{\prime}$, and $C B$ all pass through K.

Theorem 3.11. The lines $Y X, T L^{\prime}$, and $C B$ are concurrent (Figure 32).

Figure 32. Blue lines are concurrent.

Proof. Let E and F be the points where γ_{a} touches $A C$ and $A B$, respectively. Let $E F$ meet $C B$ at K. Then $E F, T L^{\prime}$, and $C B$ are concurrent at K by Theorem 3.10 (Figure 33).

Figure 33. Blue lines are concurrent.
Since $A F$ and $A E$ are tangents to circle γ_{a}, this means that $E F$ is the polar of A with respect to γ_{a}. Since $A X L^{\prime}$ and $A Y T$ are two secants from A, this means that $Y X$ meets $T L^{\prime}$ on the polar of A (line $E F$). But K is the only point on $T L^{\prime}$ that lies on the polar of A. Thus, $Y X$ also passes through K.

The following result comes from [28].
Theorem 3.12. The line $T L^{\prime}$ bisects $\angle A T L$ (Figure 34).

Figure 34. $T L^{\prime}$ bisects $\angle A T L$
Proof. Let $T L^{\prime}$ meet $C B$ at K (Figure 35).

Figure 35.
By Theorem 3.11, $Y X$ passes through K. By Theorem 3.6, XTLK is a cyclic quadrilateral, so $\angle K T L=\angle K X L$. But since $X Y T L^{\prime}$ is also a cyclic quadrilateral, $\angle K X L=\angle Y T L^{\prime}$. Thus, $\angle K T L=\angle Y T L^{\prime}$ so $T L^{\prime}$ bisects $\angle A T L$.

Theorem 3.13. Extend AT until it meets the incircle at T^{\prime} as shown in Figure 36. Then $T L=T T^{\prime}$.

Figure 36. blue lines are congruent

Proof. Let $A L$ meet γ_{a} at L^{\prime}, closer to L, as shown in the figure to the right. The incircle and γ_{a} are homothetic with A being the center of the homothety. Since a homothety maps a line into a parallel line, $L^{\prime} T \| L T^{\prime}$. Thus $\angle 2=\angle 3$ and $\angle 1=\angle 4$. By Theorem 3.12, $\angle 1=\angle 2$. Hence $\angle 3=\angle 4$ making $\triangle T L T^{\prime}$ an isosceles triangle.

The following result comes from [33].
Theorem 3.14. Let $A T$ meet $B C$ at M. Then TI bisects $\angle L T M$ (Figure 37).

Figure 37. $T I$ bisects $\angle L T M$

Proof. Let $A M$ meet the incircle at T^{\prime} (closer to M) as shown in the figure to the right. By Theorem 3.13, $T L=T T^{\prime}$. Since both L and T^{\prime} lie on the incircle, we must have $I L=I T^{\prime}$. Thus $\triangle L T I \cong \triangle T^{\prime} T I$ by SSS. Hence $\angle L T I=\angle I T T^{\prime}$.

Theorem 3.15. We have $\angle A T D=\angle I L T$ (Figure 38).

Figure 38. green angles are equal
Proof. Let F be the foot of the perpendicular from T to $B C$. Let $A T$ meet $B C$ at M. Since γ_{a} is tangent to ω_{a} at T, this means that $D T O_{a}$ is a straight line.

Number the resulting angles as shown in the figure to the right. Lines $A M$ and $D O_{a}$ meet at T forming equal vertical angles. These are labeled x in the figure. From Theorem 2.11, $\angle B T F=\angle O_{a} T C$. These are labeled 1 in the figure. Since $T F \| I L$, $\angle F T L=\angle I L T$. These are labeled y in the figure. From Theorem 3.14, $\angle L T I=$ $\angle I T M$. These are labeled 2 in the figure.

By Protasov's Theorem, $1+y+2=2+x+1$. Thus $x=y$ and $\angle A T D=\angle I L T$.

Lemma 3.16. Two circles, C_{1} and C_{2}, are internally tangent at P. A chord $A B$ of C_{1} meets C_{2} at points C and D as shown in Figure 39. Then $\angle A P C=\angle D P B$.

Figure 39. green angles are equal
Proof. Let t be the common tangent at P. Let $P A$ meet C_{2} at E and let $P B$ meet C_{2} at F. Label the angles as shown in the figure to the right.
In the blue circle, $\angle 1=\angle 2$ since both are measured by half of arc $\overparen{P F}$. In the red circle, $\angle 1=\angle 3$ since both are measured by half of arc $\widehat{P B}$.
Thus $\angle 2=\angle 3$ which makes $E F \| A B$. Parallel chords intercept equal arcs, so $\widehat{C E}=\widehat{F D}$ which implies $\angle x=\angle y$.

The following result comes from [9].
Theorem 3.17. Let AT meet BC at M. The $\odot T L M$ is tangent to γ_{a} (Figure 40).

Figure 40. three circles touch at T

Proof. Let Γ be the circle tangent to ω_{a} at T and passing through L. Let $L C$ meet Γ again at M^{\prime} as shown in Figure 41. By Lemma 3.16,

$$
\angle B T L=\angle M^{\prime} T C .
$$

These are labeled " 1 " in the figure. By Protasov's Theorem,

$$
\angle B T I=\angle I T C .
$$

Subtracting shows that

$$
\angle 2=\angle 3 .
$$

So TI bisects $\angle L T M^{\prime}$. But by Theorem 3.14, TI bisects $\angle L T M$. This implies that $M^{\prime}=M$, so $\Gamma=\odot(T L M)$ and we are done.

Figure 41.

Theorem 3.18. We have $\angle D T I=\angle T I L$ (Figure 42).

Figure 42. green angles are equal

Proof. Let $A T$ meet $B C$ at M. The sum of the angles of $\triangle T I L$ is 180°, so
(7) $180^{\circ}-\angle L T I=\angle T I L+\angle T L I$.

Since $A T M$ is a straight line, we have

$$
\angle D T I=180^{\circ}-\angle I T M-\angle A T D
$$

By Theorem 3.14, $\angle I T M=\angle L T I$, so $\angle D T I=180^{\circ}-\angle L T I-\angle A T D$.

From equation (7), we get

$$
\angle D T I=\angle T I L+\angle T L I-\angle A T D
$$

From Theorem 3.15, $\angle T L I=\angle A T D$.
Hence $\angle D T I=\angle T I L$.
Lemma 3.19. Let γ_{a} be any circle inscribed in $\angle B A C$. Let T be any point on γ_{a} on the other side of $A L$ from B. Let $A L$ meet γ_{a} at X (nearer A). Let $A T$ meet the incircle at Y^{\prime}. Then X, Y^{\prime}, T, and L are concyclic (Figure 43).

Figure 43. four points lie on a circle
Proof. Let L^{\prime} be the point (nearer L) where $A L$ meets γ_{a} as shown in the figure to the right. Lines $A X L^{\prime}$ and $A Y T$ are both secants to γ_{a}, so

$$
A X \cdot A L^{\prime}=A Y \cdot A T
$$

Note that the incircle and circle γ_{a} are homothetic with A as the center of the homothety. This homothety maps L^{\prime} to L and maps Y to Y^{\prime}. Therefore,

$$
\frac{A L^{\prime}}{A L}=\frac{A Y}{A Y^{\prime}}
$$

Hence

$$
\frac{A X}{A T}=\frac{A Y}{A L^{\prime}}=\frac{A Y^{\prime}}{A L}
$$

Thus $A X \cdot A L=A Y^{\prime} \cdot A T$ which implies that X, Y^{\prime}, T, and L lie on a circle.

The following result comes from [35].
Theorem 3.20. We have $I T \perp T L^{\prime}$ (Figure 44).

Figure 44. blue lines are perpendicular

Proof. Line $T L^{\prime}$ is the external angle bisector of $\angle B T C$ by Theorem 3.9. Line $T I$ is the internal angle bisector of $\angle B T C$ by Protasov's Theorem. Thus, $I T \perp T L^{\prime}$.

Theorem 3.21. Let γ_{a} be any circle inscribed in $\angle B A C$. Let $A L$ meet γ_{a} at X (closer to A). Let γ_{a} touch $A C$ and $A B$ at E and F, respectively. Let $A I$ meet $E F$ at G. Then X, G, I, and L lie on a circle (Figure 45).

Figure 45. four points lie on a circle

Proof. Let $X L$ meet γ_{a} again at L^{\prime}. Line $A X L^{\prime}$ is a secant to circle γ_{a}, and $A E$ a tangent. So $A X \cdot A L^{\prime}=(A E)^{2}$.

Triangles $A G E$ and $A E D$ are similar right triangles, so

$$
\frac{A E}{A G}=\frac{A D}{A E} \quad \text { or } \quad(A E)^{2}=A D \cdot A G
$$

Thus,

$$
A X \cdot A L^{\prime}=A D \cdot A G \quad \text { or } \quad \frac{A X}{A G}=\frac{A D}{A L^{\prime}}
$$

From Theorem 3.1, $D L^{\prime} \| I L$, so

$$
\frac{A D}{A L^{\prime}}=\frac{A I}{A L}
$$

Therefore,

$$
\frac{A X}{A G}=\frac{A I}{A L} \quad \text { or } \quad A X \cdot A L=A G \cdot A I
$$

This implies that X, G, I, and L lie on a circle.
Theorem 3.22. Let γ_{a} touch $A C$ and $A B$ at E and F, respectively. Let $A I$ meet $E F$ at G. Let $E F$ meet $C B$ at K. Then $X, G, Y^{\prime}, T, I, L$, and K lie on a circle with diameter KI (Figure 46).

Figure 46. seven points lie on a circle
Proof. From Theorem 3.10, TK passes through L^{\prime}. But from Theorem 3.20, $T L^{\prime} \perp T I$, so $\angle K T I$ is a right angle. This means that T lies on the circle with diameter $K I$. Since $\angle I L K$ is also a right angle, this means that L is also on this circle.
From Theorem 3.6, the circle through T, L, and K also passes through X.
From Lemma 3.19, the circle through X, T, and L passes through Y^{\prime}.
Since $A I$ bisects $\angle B A C, G$ is the midpoint of $E F$ and $A G \perp E F$. Hence $\angle K G I$ is a right angle. Thus, G lies on the circle with diameter $K I$.
Therefore, all seven points lie on the blue circle shown in Figure 46 .
See also [8] for a proof that X, G, T, I, L, and K lie on a circle.

Theorem 3.23. We have $\angle A T D=\angle I X T$ (Figure 47).

Figure 47. green angles are equal

Proof. By Theorem 3.22, X, T, I, and L lie on a circle as shown in the figure to the right. Then

$$
\angle I X T=\angle I L T
$$

because both subtend arc $\widehat{T I}$. By Theorem 3.15,

$$
\angle I L T=\angle A T D
$$

where D is the center of γ_{a} as seen in Figure 47. Thus,
 $\angle A T D=\angle I X T$.

4. Arcs with a Given Angular Measure

We can generalize many of the results in [30] by replacing the semicircles with arcs having the same angular measure. Let ω_{a}, ω_{b}, and ω_{c} be arcs with the same angular measure θ erected internally on the sides of $\triangle A B C$ as shown in Figure 48 ,

Figure 48. arcs have same angular measure

Throughout this section, we will use the symbols shown in the following table.

Notation for this Section	
Symbol	Description
θ	angular measure of arc $\widehat{B T C}$
t	$\tan (\theta / 4)$
ρ_{a}	radius of γ_{a}
ω_{a}	arc with angular measure θ that passes through B and C
R_{a}	radius of ω_{a}
H	point where incircle touches $A C$
K	point where γ_{a} touches $A C$
E	point where $A C$ meets ω_{a} again
O_{a}	center of ω_{a}
L	point where incircle touches $B C$
L^{\prime}	point closer to L where $A L$ meets γ_{a}
X	point closer to A where $A L$ meets γ_{a}

Theorem 4.1. Let the line through I parallel to BE meet AC at F (Figure 49). Then

$$
\angle I F A=\frac{\theta}{2} .
$$

Figure 49.
Proof. Since arc $\widehat{B C}$ has measure $\theta, \angle C O_{a} B=\theta$ and the remaining arc on the circle $\left(O_{a}\right)$ outside the triangle must have measure $360^{\circ}-\theta$. An inscribed angle is measured by half its intercepted arc, so $\angle B E C=180^{\circ}-\theta / 2$. Consequently, $\angle A E B=\theta / 2$ and since $B E \| I F$, we have $\angle A F I=\theta / 2$.

Note 1. If $\theta<2 C$, the figure looks different (Figure 50). In this case, the arc (extended) meets $A C$ at a point E such that C lies between A and E. In this case, $\angle C E B$ is measured by half arc $\widehat{B C}$ and $B E \| I F$ implies that $\angle A F I=\theta / 2$.

Figure 50. Case $\theta<2 C$
Note 2. If F lies between A and H or if $\theta>2\left(180^{\circ}-A\right)$ which causes A to lie between E and F, the figure also looks different (Figure 51). In this case, the arc meets $A C$ (possibly extended) at a point E such that F lies between E and H. In this case, the red arc has measure θ and the remaining arc (below $B C)$ has measure $360^{\circ}-\theta$. Then $\angle B E C$ is measured by half that arc and so $\angle B E C=180^{\circ}-\theta / 2$. So $B E \| I F$ implies that $\angle A F I=\theta / 2$.

Figure 51. Case $\theta>2\left(180^{\circ}-A\right)$
Corollary 4.2. Let the line through I parallel to BE meet $A C$ at F. Then

$$
I F=r \csc \frac{\theta}{2} .
$$

Proof. From right triangle IHF, we have

$$
\sin \frac{\theta}{2}=\frac{I H}{I F}=\frac{r}{I F},
$$

so $I F=r \csc \frac{\theta}{2}$.
Let γ_{a} be the circle inside $\triangle A B C$ tangent to sides $A B$ and $A C$ and also tangent to ω_{a}. The radii of circles γ_{a}, γ_{b}, and γ_{c} are denoted by ρ_{a}, ρ_{b}, and ρ_{c}, respectively.

Theorem 4.3. We have (Figure 52)

$$
\angle H I K=\frac{\theta}{4} .
$$

Figure 52. green angle $=\theta / 4$

Proof. A line through I parallel to $B E$ meets $A C$ at F (Figure 53).

Figure 53.
From Theorem 4.1, $\angle A F I=\theta / 2$. From Theorem 2.10, $I F=F K$, so $\triangle K F I$ is isosceles and $\angle F I K=\angle I K F=\left(180^{\circ}-\theta / 2\right) / 2=90^{\circ}-\theta / 4$. From right triangle $F H I$, we see that $\angle F I H=90^{\circ}-\theta / 2$.
Thus, $\angle H I K=\angle F I K-\angle F I H=\left(90^{\circ}-\theta / 4\right)-\left(90^{\circ}-\theta / 2\right)=\theta / 4$.

Theorem 4.4. We have $\angle D K I=\theta / 4$ (Figure 54).

Figure 54. $\angle D K I=\theta / 4$

Proof. Since $D K$ and $I H$ are both perpendicular to $A C$, we have $D K \| I H$. Thus $\angle D K I=\angle H I K=\theta / 4$.
Corollary 4.5. The length of the common external tangent between ρ_{a} and the incircle is $r \tan \frac{\theta}{4}$.

Proof. In Figure 52, we see that $H K$ is the common external tangent between ρ_{a} and the incircle. Since I is the incenter, $I H=r$. From right triangle $I H K$, we see that

$$
\tan \angle H I K=\tan \frac{\theta}{4}=\frac{H K}{I H}=\frac{H K}{r}
$$

and the result follows.
Note. If the arc ω_{a} gets large enough, point A will lie inside ω_{a} and circle γ_{a} will not exist. However, if we expand the definition of γ_{a} in that case so that it refers to the circle outside $\triangle A B C$, tangent to sides $A B$ and $A C$ extended, and tangent internally to ω_{a} as shown in Figure 55, then Theorem 4.3 still holds.

Figure 55. green angle $=\theta / 4$

Theorem 4.6 (Ajima's Theorem). We have

$$
\begin{equation*}
\rho_{a}=r\left(1-\tan \frac{A}{2} \tan \frac{\theta}{4}\right) . \tag{8}
\end{equation*}
$$

Figure 56.

Proof. See Figure 56. By Corollary 4.5,

$$
H K=r \tan \frac{\theta}{4} .
$$

In right triangle $A I H$, we have $\angle I A H=A / 2$, so

$$
A H=r \cot \frac{A}{2} .
$$

Therefore,

$$
A K=A H-H K=r \cot \frac{A}{2}-r \tan \frac{\theta}{4}
$$

From right triangle $A K D$ with $D K=\rho_{a}$, we have

$$
\rho_{a}=A K \tan \frac{A}{2}=\left(r \cot \frac{A}{2}-r \tan \frac{\theta}{4}\right) \tan \frac{A}{2}
$$

which is the desired result by the identity $\tan x \cot x=1$.
The wasan geometer Naonobu Ajima found this result in 1781 (see [13, p. 32]). More info about Ajima's Theorem can be found in [13, pp. 96-97]. It has been said [12, p. 103] that this result is of great importance because it is used in the solution of many Japanese temple geometry problems.

Corollary 4.7. We have

$$
\rho_{a}=r\left(1-\frac{r t}{p-a}\right) .
$$

Proof. This follows immediately from the well-known fact [37] that in Figure 52 , $A H=p-a$, so $\tan (A / 2)=r /(p-a)$.
Corollary 4.8. We have

$$
\rho_{a}=\frac{\Delta-(p-b)(p-c) t}{p}=r-\frac{(p-b)(p-c) t}{p} .
$$

Proof. We use the well-known formulas $r=\frac{\Delta}{p}$ and $\Delta=\sqrt{(p(p-a)(p-b)(p-c)}$. From Corollary 4.7, we have

$$
\begin{aligned}
\rho_{a} & =r-\frac{r^{2} t}{p-a} \\
& =r-\left(\frac{\Delta^{2}}{p^{2}}\right) \frac{t}{p-a} \\
& =r-\left(\frac{p(p-a)(p-b)(p-c)}{p^{2}}\right) \frac{t}{p-a} \\
& =r-\frac{(p-b)(p-c) t}{p} \\
& =\frac{\Delta-(p-b)(p-c) t}{p} .
\end{aligned}
$$

Theorem 4.6 remains true, with a sign change, if we allow the extended position for γ_{a}.

Theorem 4.9. Let ω_{a} be an arc of a circle with angular measure θ that passes through points B and C of $\triangle A B C$. Suppose $\theta>2\left(180^{\circ}-A\right)$ so that A lies inside ω_{a}. Let γ_{a} be the circle outside the triangle tangent to sides $A B$ and $A C$ extended and also internally tangent to ω_{a} as shown in Figure 57. Let ρ_{a} be the radius of γ_{a}. Then

$$
\rho_{a}=-r\left(1-\tan \frac{A}{2} \tan \frac{\theta}{4}\right) .
$$

Figure 57.
In all cases, we could say that

$$
\rho_{a}=r\left|1-\tan \frac{A}{2} \tan \frac{\theta}{4}\right| .
$$

A unifying discussion about circles tangent to arcs with a given angular measure can be found in [24].

Lemma 4.10. For any x,

$$
\sin 2 x=\frac{2 \tan x}{\tan ^{2} x+1} .
$$

Proof. We have

$$
\frac{2 \tan x}{\tan ^{2} x+1}=\frac{2 \tan x}{\sec ^{2} x}=\frac{2(\sin x) /(\cos x)}{1 / \cos ^{2} x}=2 \sin x \cos x=\sin 2 x .
$$

Theorem 4.11 (Radius of ω_{a}). We have

$$
R_{a}=\frac{a}{2} \csc \frac{\theta}{2} .
$$

Proof. Let M be the foot of the perpendicular from O_{a} to $B C$ (Figure 58).

Figure 58.
Then $O_{a} C=R_{a}$ and $M C=a / 2$. We have $\angle C O_{a} B=\theta$ since the angular measure of the arc is θ. Thus $\angle C O_{a} M=\theta / 2$ and hence $\sin (\theta / 2)=(a / 2) / R_{a}$ and the result follows.

Corollary 4.12. We have

$$
\begin{equation*}
R_{a}=\frac{a\left(t^{2}+1\right)}{4 t} \tag{9}
\end{equation*}
$$

Proof. This follows from Lemma 4.10 .
Corollary 4.13. We have

$$
\begin{equation*}
R_{a}=\frac{R\left(t^{2}+1\right) \sin A}{2 t} \tag{10}
\end{equation*}
$$

Proof. From the Extended Law of Sines, we have $a / \sin A=2 R$. Substituting $a=2 R \sin A$ into equation (9) gives the desired result.

Theorem 4.14. We have (Figure 59)

$$
\frac{A L^{\prime}}{A L}=\frac{\rho_{a}}{r} .
$$

Figure 59.

Proof. This follows from the fact that L and L^{\prime} are corresponding points in the homothety with center A that maps γ_{a} into the incircle.

Theorem 4.15 (Length of $A L^{\prime}$). We have (Figure 60)

$$
A L^{\prime}=\left(1-\frac{r t}{p-a}\right) \sqrt{\frac{(p-a)\left[a p-(b-c)^{2}\right]}{a}}
$$

Figure 60.

Proof. Since L is the point where the incircle touches $B C, A L$ is a Gergonne cevian of $\triangle A B C$. The length of a Gergonne cevian is known. From Property 3.1.3 in [26], we have

$$
\begin{equation*}
A L=\sqrt{\frac{(p-a)\left[a p-(b-c)^{2}\right]}{a}} . \tag{11}
\end{equation*}
$$

Circle γ_{a} and the incircle are homothetic, with A being the center of the homothety. Since L^{\prime} and L are corresponding points of the homothety, we have

$$
\frac{A L^{\prime}}{A L}=\frac{\rho_{a}}{r} .
$$

Thus, $A L^{\prime}=\left(\rho_{a} / r\right) \cdot A L$. Combining this with the value of ρ_{a} / r from Corollary 4.7 gives us our result.

Lemma 4.16. We have $A K=p-a-r t$.

Figure 61.

Proof. It is well known that $A H=p-a$ (Figure 61). From Corollary 4.5, we have $H K=r t$. Thus, $A K=A H-H K=p-a-r t$.

Theorem 4.17 (Length of $A X$). We have (Figure 62).

$$
A X=\frac{(p-a-r t) \sqrt{a(p-a)}}{\sqrt{a p-(b-c)^{2}}}
$$

Figure 62.

Proof. Since $A X L^{\prime}$ is a secant to γ_{a} and $A K$ is a tangent, we have $A X \cdot A L^{\prime}=$ $(A K)^{2}$. From Lemma 4.16,

$$
A K=p-a-r t .
$$

From Theorem 4.15, we have

$$
A L^{\prime}=\left(\frac{p-a-r t}{p-a}\right) \sqrt{\frac{(p-a)\left[a p-(b-c)^{2}\right]}{a}}
$$

So

$$
\begin{aligned}
A X & =\frac{(A K)^{2}}{A L^{\prime}} \\
& =\frac{(p-a-r t)(p-a)}{\sqrt{\frac{(p-a)\left[a p-(b-c)^{2}\right]}{a}}} \\
& =\frac{(p-a-r t) \sqrt{a(p-a)}}{\sqrt{a p-(b-c)^{2}}} .
\end{aligned}
$$

Corollary 4.18. We have

$$
\frac{A X}{A L^{\prime}}=\frac{a(p-a)}{a p-(b-c)^{2}} .
$$

5. Barycentric Coordinates

In this section, we will find the barycentric coordinates for various points associated with our configuration.

Theorem 5.1 (Coordinates for D). The barycentric coordinates for D are

$$
D=(a p(p-a)+(b+c) t \Delta): b p(p-a)-b t \Delta: c p(p-a)-c t \Delta)
$$

where Δ denotes the area of $\triangle A B C, p$ denotes the semiperimeter, and $t=\tan \frac{\theta}{4}$.
Proof. Let y be the distance between D and $B C$. Summing the areas of triangles $D B C, D C A$ and $D A B$ we obtain

$$
a y+b \rho_{a}+c \rho_{a}=2 \Delta .
$$

Thus,

$$
a y=2 \Delta-(b+c) \rho_{a} .
$$

Letting $[X Y Z]$ denote the area of $\triangle X Y Z$, we find that the barycentric coordinates for D are therefore

$$
\begin{aligned}
D & =([D B C]:[D C A]:[D A B])=\left(a y: b \rho_{a}: c \rho_{a}\right) \\
& =\left(2 \Delta-(b+c) \rho_{a}: b \rho_{a}: c \rho_{a}\right) \\
& =\left(\frac{2 \Delta}{\rho_{a}}-(b+c): b: c\right) .
\end{aligned}
$$

Replacing ρ_{a} by its value given by Corollary 4.7, we get

$$
\begin{aligned}
D & =\left(\frac{2 \Delta}{r\left(1-\frac{r t}{p-a}\right)}-(b+c): b: c\right) \\
& =\left(\frac{2(p-a) \Delta}{r(p-a-r t)}-(b+c): b: c\right) \\
& =((b+c-a) \Delta-(b+c) r(p-a-r t): b r(p-a-r t): c r(p-a-r t)) .
\end{aligned}
$$

Replacing r by Δ / p, then multiplying all coordinates by p^{2} / Δ gives

$$
D=(a p(b+c-p)+(b+c) t \Delta: b p(p-a)-b t \Delta: c p(p-a)-c t \Delta)
$$

Finally, noting that $b+c-p=p-a$, gives the desired result.
Theorem 5.2 (Coordinates for O_{a}). The barycentric coordinates for O_{a} are

$$
O_{a}=\left(-a^{2}: S_{c}+S \cot \phi: S_{b}+S \cot \phi\right) .
$$

where $\phi=90^{\circ}-\theta / 2, S=2 \Delta, S_{b}=\left(c^{2}+a^{2}-b^{2}\right) / 2$, and $S_{c}=\left(a^{2}+b^{2}-c^{2}\right) / 2$.
Proof. The result follows from Conway's Formula [40, p. 34].

Theorem 5.3 (Coordinates for T). The barycentric coordinates for T are ($T_{x}: T_{y}: T_{z}$) where

$$
\begin{aligned}
T_{x} & =2 a \sin \frac{\theta}{4}\left(a u \cos \frac{\theta}{2}+(b+c) u+2 a S \sin \frac{\theta}{2}\right), \\
T_{y} & =-u\left(2\left(a^{2}-b c-c^{2}\right) \cos \frac{\theta}{2}+a^{2}+2 a b-(b+c)^{2}\right) \sin \frac{\theta}{4} \\
& +2 S\left(a^{2}+b c-c^{2}\right) \cos \frac{3 \theta}{4}+2 b S(2 a+b-c) \cos \frac{\theta}{4}, \\
T_{z} & =-u\left(2\left(a^{2}-b c-b^{2}\right) \cos \frac{\theta}{2}+a^{2}+2 a c-(b+c)^{2}\right) \sin \frac{\theta}{4} \\
& +2 S\left(a^{2}+b c-b^{2}\right) \cos \frac{3 \theta}{4}+2 c S(2 a-b+c) \cos \frac{\theta}{4},
\end{aligned}
$$

where $S=2 \Delta$ and $u=a^{2}-(b-c)^{2}$.
Proof. The barycentric coordinates for D were found in Theorem 5.1. This can be simplified to $D=\left(D_{x}: D_{y}: D_{z}\right)$ where

$$
\begin{aligned}
& D_{x}=a^{3}-a(b+c)^{2}-2 S(b+c) t, \\
& D_{y}=-b\left(-a^{2}+b^{2}+2 b c+c^{2}-2 S t\right), \\
& D_{z}=-c\left(-a^{2}+b^{2}+2 b c+c^{2}-2 S t\right)
\end{aligned}
$$

by using the substitutions $r=S /(a+b+c), p=(a+b+c) / 2$, and $\Delta=S / 2$.
The barycentric coordinates for O_{a} were found in Theorem 5.2, namely

$$
O_{a}=\left(-a^{2}: S_{c}+S \cot \phi: S_{b}+S \cot \phi\right)
$$

where $\phi=90^{\circ}-\theta / 2, S_{b}=\left(c^{2}+a^{2}-b^{2}\right) / 2$, and $S_{c}=\left(a^{2}+b^{2}-c^{2}\right) / 2$.
From Corollary 4.8, we have

$$
\rho_{a}=\frac{S-2(p-b)(p-c) t}{2 p} .
$$

The radius of ω_{a} was found in Theorem 4.11, namely

$$
R_{a}=\frac{a}{2} \csc \frac{\theta}{2} .
$$

The touch point T divides the segment $D O_{a}$ in the ratio $\rho_{a}: R_{a}$. This fact allows us to use Mathematica to find the barycentric coordinates for T from the known barycentric coordinates for D and O_{a}.

6. Properties of Three Ajima Circles

Let ω_{a}, ω_{b}, and ω_{c}, be arcs of angular measure θ erected internally on the sides of $\triangle A B C$. Let γ_{a} be the circle inscribed in $\angle B A C$ and tangent externally to ω_{a}. Define γ_{b} and γ_{c} similarly. The three circles, γ_{a}, γ_{b} and γ_{c} will be called a general triad of circles associated with $\triangle A B C$ (Figure 63).

Figure 63. general triad of circles
For the remainder of this paper, we will assume that the three circles γ_{a}, γ_{b} and γ_{c} all lie inside $\triangle A B C$. An equivalent condition is that all angles of $\triangle A B C$ have measure less than $180^{\circ}-\frac{\theta}{2}$.

Theorem 6.1. The common external tangents to any pair of circles in a general triad are congruent (Figure 64). The common length is $2 r \tan \frac{\theta}{4}$.

Figure 64. blue lines are congruent

Proof. The common length is twice $K H$ (Figure 52) whose value is given by Corollary 4.5 .

Note. The theorem remains true if some or all of the yellow circles are outside of $\triangle A B C$ as shown in Figure 65 .

(a)

(b)

(c)

Figure 65. blue lines are congruent
Theorem 6.2. Let M_{a}, M_{b}, and M_{c} be the midpoints of the common tangents (lying along the sides of $\triangle A B C$) to a general triad of circles associated with that triangle. Then M_{a}, M_{b}, and M_{c} are the touch points of the incircle of $\triangle A B C$ with the sides of the triangle (Figure 66).

Figure 66.
Proof. This follows from Corollary 4.5.

Theorem 6.3. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with triangle $\triangle A B C$. Let M_{a}, M_{b}, and M_{c} be the points where the incircle of $\triangle A B C$ touches the sides. Then the radical axis of γ_{b}, and γ_{c} is $A M_{a}$ (Figure 67).

Figure 67.
Proof. From Theorem 6.2, $M_{a} E_{a}=M_{a} F_{a}$. Thus, the tangents from M_{a} to γ_{b} and γ_{c} are equal. Since $A D_{c}=A D_{b}$ and $D_{c} E_{c}=D_{b} F_{b}$ (Theorem 6.1), this means $A E_{c}=A F_{b}$. Hence the tangents from A to γ_{b} and γ_{c} are equal. The radical axis of circles γ_{b} and γ_{c} is the locus of points such that the lengths of the tangents to the two circles from that point are equal. The radical axis of two circles is a straight line. Therefore, the radical axis of circles γ_{b} and γ_{c} is $A M_{a}$, the Gergonne cevian from A.

Theorem 6.4. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with triangle $\triangle A B C$. Then the radical center of the three circles of the triad is the Gergonne point of $\triangle A B C$ (Figure 68).

Figure 68.
Proof. By Theorem 6.3, the radical axis of circles γ_{b} and γ_{c} is $A M_{a}$, the Gergonne cevian from A. Similarly, the radical axis of circles γ_{a} and γ_{c} is the Gergonne cevian from B and the radical axis of circles γ_{a} and γ_{b} is the Gergonne cevian from C. Hence, the radical center of the general triad of circles is the intersection point of the three Gergonne cevians, namely, the Gergonne point of $\triangle A B C$.

Theorem 6.5. The six points of contact of a general triad of circles lie on a circle with center I, the incenter of $\triangle A B C$ (Figure 69).

Figure 69. touch points are concyclic
Proof. This follows from Theorem 4.3 from which we can deduce that

$$
I D_{b}=I D_{c}=I E_{a}=I E_{c}=I F_{a}=I F_{b}=r \sec \frac{\theta}{4} .
$$

Theorem 6.6. Let the centers of ω_{a}, ω_{b}, and ω_{b}, be O_{a}, O_{b}, and O_{c}, respectively. Then $A O_{a}, B O_{b}$, and $C O_{c}$ are concurrent (Figure 70).

Figure 70. red lines are concurrent
Proof. Note that isosceles triangles $B C O_{a}, C A O_{b}$, and $A B O_{c}$ are similar. Therefore $A O_{a}, B O_{b}$, and $C O_{c}$ are concurrent by Jacobi's Theorem [38].

Theorem 6.7 (Paasche Analog). Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with triangle $\triangle A B C$. Let T_{a}, T_{b}, and T_{c} be the points where they touch the three arcs having the same angular measure (Figure 711). Then $A T_{a}, B T_{b}$, and $C T_{c}$ are concurrent.

Figure 71. red lines are concurrent
Proof. The barycentric coordinates for T_{a} were found in Theorem 5.3. The barycentric coordinates for A are $(1: 0: 0)$. We can thus find the equation of the line $A T_{a}$ using formula (3) from [15]. Similarly, we can find the equations for the lines $B T_{b}$ and $C T_{c}$. Then, using Mathematica, we can use the condition that three lines are concurrent (formula (6) from [15]) to prove that $A T_{a}, B T_{b}$ and $C T_{c}$ are concurrent.

We call this theorem the Paasche Analog because when $\theta=180^{\circ}$, the point of concurrence is the Paasche point of the triangle [19].

Open Question 1. Is there a purely geometric proof for Theorem 6.7?
The coordinates for the point of concurrence are complicated and we do not give them here. However, we did find the following interesting result.

Theorem 6.8. When $\theta=120^{\circ}$, the point of concurrence of $A T_{a}, B T_{b}$, and $C T_{c}$ is the isogonal conjugate of X_{7005}. When $\theta=240^{\circ}$, the point of concurrence of $A T_{a}, B T_{b}$, and $C T_{c}$ is X_{14358}.

7. Some Metric Identities

Throughout this section, we will let

$$
t=\tan \frac{\theta}{4}
$$

and

$$
\mathbb{W}=\frac{4 R+r}{p}
$$

The following three identities were given in [29, Lemma 3] and we will need them here as well.

Lemma 7.1. Let A, B, and C be the angles of a triangle with inradius r, circumradius R, and semiperimeter p. Then

$$
\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2}=\mathbb{W}
$$

Lemma 7.2. Let A, B, and C be the angles of a triangle. Then

$$
\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1 .
$$

Lemma 7.3. Let A, B, and C be the angles of a triangle with inradius r and semiperimeter p. Then

$$
\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}=\frac{r}{p} .
$$

From Theorem 4.6,

$$
\rho_{a}=r\left(1-t \tan \frac{A}{2}\right),
$$

so

$$
\begin{equation*}
r-\rho_{a}=r t \tan \frac{A}{2} \tag{12}
\end{equation*}
$$

with similar formulas for $r-\rho_{b}$ and $r-\rho_{c}$. Also,

$$
\begin{equation*}
\tan \frac{A}{2}=\frac{r-\rho_{a}}{r t} \tag{13}
\end{equation*}
$$

with similar formulas for $\tan \frac{B}{2}$ and $\tan \frac{C}{2}$. Using equation (12) gives us the following corollary to these lemmas.
Corollary 7.4. For a general triad of circles associated with $\triangle A B C$, we have

$$
\begin{align*}
\sum\left(r-\rho_{a}\right) & =r t \mathbb{W} \tag{14}\\
\sum\left(r-\rho_{a}\right)\left(r-\rho_{b}\right) & =r^{2} t^{2} \tag{15}\\
\prod\left(r-\rho_{a}\right) & =\frac{r^{4} t^{3}}{p} \tag{16}
\end{align*}
$$

Theorem 7.5. For a general triad of circles associated with $\triangle A B C$, we have

$$
\rho_{a}+\rho_{b}+\rho_{c}=3 r-r t \mathbb{W}
$$

Proof. This follows immediately from equation (14).
When $\theta=180^{\circ}$, the arcs become semicircles, $t=1$, and this result agrees with formula (6) in [29].

Theorem 7.6. For a general triad of circles associated with $\triangle A B C$, we have

$$
3 r^{2}-2 r \sum \rho_{a}+\sum \rho_{a} \rho_{b}=r^{2} t^{2}
$$

Proof. Expanding the left side of equation (15) gives the desired result.
Theorem 7.7. For a general triad of circles associated with $\triangle A B C$, we have

$$
\rho_{a} \rho_{b}+\rho_{b} \rho_{c}+\rho_{c} \rho_{a}=r^{2}\left(t^{2}-2 t \mathbb{W}+3\right) .
$$

Proof. From Theorem 7.6, we have

$$
3 r^{2}-2 r \sum \rho_{a}+\sum \rho_{a} \rho_{b}=r^{2} t^{2}
$$

Using Theorem 7.5, we get

$$
3 r^{2}-2 r(3 r-r t \mathbb{W})+\sum \rho_{a} \rho_{b}=r^{2} t^{2}
$$

Thus,

$$
\sum \rho_{a} \rho_{b}=r^{2} t^{2}+2 r(3 r-r t \mathbb{W})-3 r^{2}
$$

which simplifies to

$$
\sum \rho_{a} \rho_{b}=r^{2} t^{2}-2 r^{2} t \mathbb{W}+3 r^{2}
$$

as desired.
When $\theta=180^{\circ}$, the arcs become semicircles and this result agrees with formula (7) in [29].

Theorem 7.8. We have

$$
\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}=r^{2}\left[3-2 t \mathbb{W}+\left(\mathbb{W}^{2}-2\right) t^{2}\right]
$$

Proof. Using the identity

$$
\left(\sum \rho_{a}\right)^{2}=\sum \rho_{a}^{2}+2 \sum \rho_{a} \rho_{b}
$$

we find that

$$
\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}=(3 r-r t \mathbb{W})^{2}-2 r^{2}\left(t^{2}-2 t \mathbb{W}+3\right) .
$$

Simplifying gives

$$
\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}=r^{2}\left[3-2 t \mathbb{W}+\left(\mathbb{W}^{2}-2\right) t^{2}\right]
$$

which is the desired result.
When $\theta=180^{\circ}$, the arcs become semicircles and this result agrees with formula (8) in [29].

Theorem 7.9. For a general triad of circles associated with $\triangle A B C$, we have

$$
\rho_{a} \rho_{b} \rho_{c}=r^{3}\left(1-t \mathbb{W}+t^{2}-\frac{r}{p} t^{3}\right) .
$$

Proof. Start with equation (16). Expand and use Theorems 7.5 and 7.7 to substitute known values for $\sum \rho_{a}$ and $\sum \rho_{a} \rho_{b}$. Solving for $\rho_{a} \rho_{b} \rho_{c}$ then gives the desired formula.

The following result was found empirically using the program "OK Geometry" 3^{3}
Theorem 7.10. We have

$$
a^{2} \rho_{a}^{2}\left(2 r-\rho_{a}\right)^{2}+16 r\left(r-\rho_{a}\right)\left(r R-r R_{a}-\rho_{a} R\right)\left(r R-r R a+\rho_{a} R_{a}\right)=0
$$

Proof. Starting with the left side of the equation, we make the following substitutions, in succession.

$$
\begin{aligned}
\rho_{a} & =r\left(1-\frac{r}{p-a} \tan \frac{\theta}{4}\right) \\
R & =\frac{a b c}{4 \Delta} \\
r & =\frac{\Delta}{p} \\
\Delta & =\sqrt{p(p-a)(p-b)(p-c)} \\
p & =\frac{a+b+c}{2} \\
R_{a} & =\frac{a}{2 \cos \left(90^{\circ}-\frac{\theta}{2}\right)}
\end{aligned}
$$

Simplifying the resulting expression using Mathematica, we find that the expression is equal to 0 .

In some special cases, this formula can be simplified.
Theorem 7.11. If $\theta=360^{\circ}-4 A$, then

$$
\rho_{a}=\frac{2 r R_{a}}{R+2 R_{a}} .
$$

Proof. The proof is the same as the proof of Theorem 7.10.
For a fixed θ, we can find a relationship between r, R, R_{a} and ρ_{a}, not involving a.
Theorem 7.12. We have

$$
\begin{equation*}
\frac{R_{a}}{r R}=\frac{\left(r-\rho_{a}\right)\left(1+t^{2}\right)}{\left(r-\rho_{a}\right)^{2}+r^{2} t^{2}} . \tag{17}
\end{equation*}
$$

Proof. This follows by eliminating $\tan (A / 2)$ from equations (8) and (10). The expression $\sin A$ is expressed in terms of $\tan (A / 2)$ using Lemma 4.10.

Solving for t^{2} in equation (17) gives us the following.
Theorem 7.13. We have

$$
t^{2}=\frac{\left(r-\rho_{a}\right)\left(\rho_{a} R_{a}+r R-r R_{a}\right)}{r\left(R \rho_{a}+r R_{a}-r R\right)}
$$

[^1]
8. Apollonius Circles of the Three Ajima Circles

A circle that is tangent to three given circles is called an Apollonius circle of those three circles.
If all three circles lie inside an Apollonius circle, then the Apollonius circle is called the outer Apollonius circle of the three circles. The outer Apollonius circle surrounds the three circles and is internally tangent to all three.
If all three circles lie outside an Apollonius circle, then the Apollonius circle is called the inner Apollonius circle of the three circles. The inner Apollonius circle will either be internally tangent to the three given circles or it will be externally tangent to all the circles. Figure 72 shows various configurations. In each case, the red circle is the inner Apollonius circle of the three blue circles.

Figure 72. inner Apollonius circle of three circles
We will be looking at the inner and outer Apollonius circles of a general triad of circles associated with $\triangle A B C$. But first, let us review some known facts about tangent circles.
Lemma 8.1. Let $U\left(r_{1}\right)$ and $V\left(r_{2}\right)$ be two circles in the plane. Let S be a center of similarity of the two circles (Figure 73). Then

$$
\frac{U S}{S V}=\frac{r_{1}}{r_{2}}
$$

Figure 73.
Proof. The line of centers of two circles points passes through the center of similitude. So S lies on $U V$. In a similarity, corresponding distances in two similar figures are in proportion to their ratio of similitude. Their ratio of similitude is the ratio of their radii, namely r_{1} / r_{2}. So $S U / S V=r_{1} / r_{2}$.

When we say that a circle is inscribed in an angle $A B C$, we mean that the circle is tangent to the rays $\overrightarrow{B A}$ and $\overrightarrow{B C}$.

The following result comes from [25, Theorem 2].
Lemma 8.2. Let C_{a} be an arbitrary circle inscribed in $\angle B A C$ of $\triangle A B C$. Let C_{b} be an arbitrary circle inscribed in $\angle C B A$. Let C_{c} be an arbitrary circle inscribed in $\angle A C B$. Let S be the inner (respectively outer) Apollonius circle of C_{a}, C_{b}, and C_{c}. Let T_{a} be the point where C_{a} touches (S). Define T_{b} and T_{c} similarly. Then $A T_{a}, B T_{b}$, and $C T_{c}$ are concurrent at a point P (Figure 74). The point P is the internal (external) center of similitude of the incircle of $\triangle A B C$ and circle (S).

Figure 74.
The following lemma comes from [7, p. 85].
Lemma 8.3. If two circles touch two others, then the radical axis of either pair passes through a center of similitude of the other pair (Figure 755).

Figure 75.

The following lemma comes from Gergonne's construction of Apollonius circles. (See [11, pp. 159-160].)

Lemma 8.4. Let $\left(O_{1}\right),\left(O_{2}\right)$, and $\left(O_{3}\right)$ be three circles in the plane. Let C_{i} be the inner Apollonius circle of the circles $\left(O_{1}\right),\left(O_{2}\right)$, and $\left(O_{3}\right)$. Let C_{o} be the outer Apollonius circle of the circles $\left(O_{1}\right),\left(O_{2}\right)$, and $\left(O_{3}\right)$. Let U_{1} be the point where C_{i} touches $\left(O_{1}\right)$. Define U_{2} and U_{3} similarly. Let V_{1} be the point where C_{o} touches $\left(O_{1}\right)$. Define V_{2} and V_{3} similarly. Then $V_{1} U_{1}, V_{2} U_{2}$, and $V_{3} U_{3}$ are concurrent at the radical center, R, of $\left(O_{1}\right),\left(O_{2}\right)$, and $\left(O_{3}\right)$ (Figure 76).

Figure 76.
Theorem 8.5. Let C_{1}, C_{2}, and C_{3} be three circles as shown in Figure 77. Let $U\left(\rho_{i}\right)$ and $V\left(\rho_{o}\right)$ be the inner and outer Apollonius circles of C_{1}, C_{2}, and C_{3}, respectively. Let S be the radical center of the three circles. Then S lies on $U V$ and

$$
\frac{S U}{S V}=\frac{\rho_{i}}{\rho_{o}} .
$$

Figure 77. $S U / S V=\rho_{i} / \rho_{o}$
Proof. Circles C_{1} and C_{2} each touch circles C_{i} and C_{o}. By Lemma 8.3, the radical axis of C_{1} and C_{2} passes through a center of similarity, S^{*}, of C_{i} and C_{o}. Similarly, the radical axis of C_{2} and C_{3} passes through S^{*}. These two radical axes meet at S, so $S=S^{*}$.
Note that C_{i} and C_{o} are two circles with center of similarity S. By Lemma 8.1, S lies on $U V$ and $S U / S V=\rho_{i} / \rho_{o}$.

The following results were found via complex calculations carried out with Mathematica. The details are omitted.

Theorem 8.6 (Coordinates for U_{a}). Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{i} be the inner Apollonius circle of the circles in the triad. Let U_{a} be the point where C_{i} touches γ_{a}. Then the barycentric coordinates for U_{a} are $(x: y: z)$ where

$$
\begin{aligned}
x & =2 a(p-b)(p-c) t \\
y & =(p-c)[S-2(p-b)(p-c) t] \\
z & =(p-b)[S-2(p-b)(p-c) t]
\end{aligned}
$$

and where p is the semiperimeter of $\triangle A B C$, S is twice the area, and $t=\tan (\theta / 4)$.
The coordinates for U_{b} and U_{c} are similar.
Theorem 8.7 (Coordinates for U). Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{i} be the inner Apollonius circle of the circles in the triad. Let U be the center of C_{i}. Then the barycentric coordinates for U are ($X: Y: Z$) where

$$
\begin{aligned}
X & =\left(-2 a^{3}+a^{2}(b+c)+(b-c)^{2}(b+c)\right) t-2 a S \\
Y & =\left(a^{3}-a^{2} c+a\left(b^{2}-c^{2}\right)+c^{3}+b^{2} c-2 b^{3}\right) t-2 b S \\
Z & =\left(a^{3}-a^{2} b+a\left(c^{2}-b^{2}\right)+b^{3}+b c^{2}-2 c^{3}\right) t-2 c S
\end{aligned}
$$

and where S is twice the area of $\triangle A B C$ and $t=\tan (\theta / 4)$.
Theorem 8.8 (Coordinates for V_{a}). Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{o} be the outer Apollonius circle of the circles in the triad. Let V_{a} be the point where C_{o} touches γ_{a}. Then the barycentric coordinates for V_{a} are $(x: y: z)$ where

$$
\begin{aligned}
& x=2(p-b)(p-c)[2 S+a(p-a) t] \\
& y=(p-a)(p-c)[S-2(p-b)(p-c) t] \\
& z=(p-a)(p-b)[S-2(p-b)(p-c) t]
\end{aligned}
$$

and where p is the semiperimeter of $\triangle A B C, S$ is twice the area, and $t=\tan (\theta / 4)$.
The coordinates for V_{b} and V_{c} are similar.
Theorem 8.9 (Coordinates for V). Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{o} be the outer Apollonius circle of the circles in the triad. Let V be the center of C_{o}. Then the barycentric coordinates for V are ($X: Y: Z$) where

$$
\begin{aligned}
& X=\left(-2 a^{3}+a^{2}(b+c)+(b-c)^{2}(b+c)\right) t+6 a S \\
& Y=\left(a^{3}-a^{2} c+a\left(b^{2}-c^{2}\right)+c^{3}+b^{2} c-2 b^{3}\right) t+6 b S \\
& Z=\left(a^{3}-a^{2} b+a\left(c^{2}-b^{2}\right)+b^{3}+b c^{2}-2 c^{3}\right) t+6 c S
\end{aligned}
$$

and where S is twice the area of $\triangle A B C$ and $t=\tan (\theta / 4)$.

Theorem 8.10. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{i} be the inner Apollonius circle of the circles in the triad. Let U_{a} be the point where C_{i} touches γ_{a}. Define U_{b} and U_{c} similarly. Then A, U_{a}, and G_{e} are collinear (Figure 78). Similarly, B, U_{b}, and G_{e} are collinear; and C, U_{c}, and G_{e} are collinear.

Figure 78. lines concur at the Gergonne point

Proof. By symmetry, it suffices to prove that A, U_{a}, and G_{e} are collinear. The barycentric coordinates for A are (1:0:0). The barycentric coordinates for G_{e} are well known to be

$$
G_{e}=\left(\frac{1}{b+c-a}: \frac{1}{c+a-b}: \frac{1}{a+b-c}\right) .
$$

The barycentric coordinates for U_{a} were given in Theorem 8.6. Using these coordinates and the condition for three points to be collinear (formula (4) from [15]), it is straightforward to confirm that A, U_{a}, and G_{e} are collinear.

Open Question 2. Is there a purely geometric proof for Theorem 8.10?
Corollary 8.11. The point we called L^{\prime} in Section 3 (the intersection of $A L$ with γ_{a} nearer L) coincides with U_{a}, the point where the inner Apollonius circle touches γ_{a}.

Theorem 8.12. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{o} be the outer Apollonius circle of the circles in the triad. Let V_{a} be the point where C_{o} touches γ_{a}. Define V_{b} and V_{c} similarly. Then A, V_{a}, and G_{e} are collinear (Figure 79). Similarly, B, V_{b}, and G_{e} are collinear; and C, V_{c}, and G_{e} are collinear.

Figure 79. lines concur at the Gergonne point
Proof. By Lemma 8.4, $U_{a} V_{a}, U_{b} V_{b}$, and $U_{c} V_{c}$ concur at the radical center of γ_{a}, γ_{b}, and γ_{c}. By Theorem 6.4, this radical center is the Gergonne point of the triangle. So V_{a} lies on $G_{e} U_{a}$. By Theorem 8.10, A, U_{a}, and G_{e} are collinear. So A lies on $G_{e} U_{a}$. Since both A and V_{a} lie on $G_{e} U_{a}$, we see that V_{a} lies on $A U_{a}$. Similarly, V_{b} lies on $B U_{b}$ and V_{c} lies on $C U_{c}$.

Corollary 8.13. The point we called X in Section 3 (the intersection of AL with γ_{a} nearer A) coincides with V_{a}, the point where the outer Apollonius circle touches γ_{a}.

Combining Theorems 8.10 and 8.12 lets us state the following result.
Theorem 8.14. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{i} be the inner Apollonius circle of the circles in the triad. Let C_{o} be the outer Apollonius circle of the circles in the triad. Let U_{a} be the point where C_{i} touches γ_{a}. Define U_{b} and U_{c} similarly. Let V_{a} be the point where C_{o} touches γ_{a}. Define V_{b} and V_{c} similarly. Then A, V_{a}, and U_{a} are collinear. Similarly, B, V_{b}, and U_{b} and C, V_{c}, and U_{c} are collinear. The three lines meet at G_{e}, the Gergonne point of $\triangle A B C$ (Figure 80).

Figure 80. lines concur at the Gergonne point
Theorem 8.15. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{i} be the inner Apollonius circle of the circles in the triad. Let U_{a} be the point where C_{i} touches γ_{a}. Let L be the point where the incircle of $\triangle A B C$ touches $B C$ (Figure 81). Then A, U_{a}, and L are collinear.

Figure 81. A, U_{a}, and L are collinear
Proof. By Theorem 8.14, $A U_{a}$ passes through G_{e}, the Gergonne point of $\triangle A B C$. But by definition, $A L$ also passes through G_{e}. Thus, $A U_{a}$ coincides with $A L$.

This gives us an easy way to construct the inner Apollonius circle of a general triad of circles. Let the incircle of $\triangle A B C$ touch $B C$ at L. Then $A L$ meets γ_{a} (closer to L) at U_{a}. Construct U_{b} and U_{c} in the same manner. Then the circumcircle of $\triangle U_{a} U_{b} U_{c}$ is the inner Apollonius circle.
To construct the outer Apollonius circle, find the point V_{a} where $A L$ meets γ_{a} (closer to A). Construct V_{b} and V_{c} in the same manner. Then the circumcircle of $\triangle V_{a} V_{b} V_{c}$ is the outer Apollonius circle.

Theorem 8.16. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{i} be the inner Apollonius circle of the circles in the triad. Let U_{a} be the point where C_{i} touches γ_{a}. Let t_{a} be the tangent to γ_{a} at U_{a}. Define t_{b} and t_{c} similarly (Figure 82). Then t_{a}, t_{b}, and t_{c} form a triangle homothetic to $\triangle A B C$. The center of the homothety is G_{e}, the Gergonne point of $\triangle A B C$.

Figure 82. red triangle is homothetic to $\triangle A B C$
Proof. By Theorem 3.2, the tangent to γ_{a} at U_{a} is parallel to $B C$. So $t_{a} \| B C$, $t_{b} \| C A$, and $t_{c} \| A \bar{B}$. Thus, the triangle formed by t_{a}, t_{b}, and t_{c}, is similar to $\triangle A B C$. Let A^{\prime}, B^{\prime}, and C^{\prime} be the vertices of this triangle. By a well-known theorem [18, Art. 24], this implies that $\triangle A B C$ is homothetic to $\triangle A^{\prime} B^{\prime} C^{\prime}$ (with A mapping to A^{\prime}, B to B^{\prime}, and C to C^{\prime}). Let L, M, and N be the points where the incircle of $\triangle A B C$ touches $B C, C A$, and $A B$ (Figure 83).

Figure 83.
The homothety maps the incircle of $\triangle A B C$ into the incircle of $\triangle A^{\prime} B^{\prime} C^{\prime}$, and the touch points into the touch points, i.e. L maps to U_{a}, M maps to U_{b}, and N maps to U_{c}. Hence, the center of the homothety is the point of concurrence of lines $L U_{a}, M U_{b}$, and $N U_{c}$. By Theorem 8.15, the line $L U_{a}$ coincides with the line $A L$, the line $M U_{b}$ coincides with $B M$, and the line $N U_{c}$ coincides with line $C N$. Therefore, the center of the homothety is G_{e}, the Gergonne point of $\triangle A B C$.

Corollary 8.17. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let C_{i} be the inner Apollonius circle of the circles in the triad. Then C_{i} and the incircle of $\triangle A B C$ are homothetic with G_{e} as the center of the homothety (Figure 84).

Figure 84. G_{e} is the center of similarity between the incircle and C_{i}
Theorem 8.18. For a general triad of circles associated with $\triangle A B C$, let $U\left(\rho_{i}\right)$ be the inner Apollonius circle of γ_{a}, γ_{b}, and γ_{c} (Figure 85). Let G_{e} be the Gergonne point of $\triangle A B C$. Then

$$
\frac{G_{e} U}{G_{e} I}=\frac{\rho_{i}}{r} .
$$

Figure 85. $G_{e} U / G_{e} I=\rho_{i} / r$
Proof. Let the touch points of circle (U) with γ_{a}, γ_{b}, and γ_{c} be U_{a}, U_{b}, and U_{c}, respectively. By Lemma 8.2, $A U_{a}, B U_{b}$, and $C U_{c}$ concur at a point P that is a center of similitude of circle (U) and the incircle, (I). By Theorem 8.14, $P=G_{e}$. Note that (U) and (I) are two circles with center of similarity G_{e}. By Lemma 8.1, $G_{e} U / G_{e} I=\rho_{i} / r$.

Theorem 8.19. For a general triad of circles associated with $\triangle A B C$, let $V\left(\rho_{o}\right)$ be the outer Apollonius circle of γ_{a}, γ_{b}, and γ_{c} (Figure 86). Let G_{e} be the Gergonne point of $\triangle A B C$. Then

$$
\frac{G_{e} V}{G_{e} I}=\frac{\rho_{o}}{r} .
$$

Figure 86. $G_{e} V / G_{e} I=\rho_{o} / r$
Proof. The proof is the same as the proof of Theorem 8.18.
Theorem 8.20. For a general triad of circles associated with $\triangle A B C$, let $U\left(\rho_{i}\right)$ and $V\left(\rho_{o}\right)$ be the inner and outer Apollonius circles of γ_{a}, γ_{b}, and γ_{c}, respectively. Let G_{e} be the Gergonne point of $\triangle A B C$. Then

$$
\frac{G_{e} V}{G_{e} U}=\frac{\rho_{o}}{\rho_{i}} .
$$

Figure 87. $G_{e} V / G_{e} U=\rho_{o} / \rho_{i}$
Proof. This follows from Theorem 8.5. It also follows from Theorems 8.18 and 8.19.

Theorem 8.21. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with triangle $\triangle A B C$. A circle externally tangent to each circle of the triad touches γ_{a} at U_{a}. Then the tangents from U_{a} to γ_{b} and γ_{c} have the same length (Figure 88).

Figure 88. red tangent lengths are equal
Proof. By Theorem 8.14, U_{a} lies on the Gergonne cevian from vertex A. By Theorem 6.3, this Gergonne cevian is the radical axis of circles γ_{b} and γ_{c}. Thus, the two tangents have the same length.

Theorem 8.22 (Miyamoto Analog). For a general triad of circles associated with $\triangle A B C$, the inner Apollonius circle of $\gamma_{a}, \gamma_{b}, \gamma_{c}$ (blue circle in Figure 89), is internally tangent to the inner Apollonius circle of $\omega_{a}, \omega_{b}, \omega_{c}$ (green circle in Figure 89).

Figure 89. green and blue circles touch at P

Proof. This is a special case of the following theorem which is stated in [20].

Theorem 8.23 (Miyamoto Generalization). Let ω_{a} be any arc erected internally on side $B C$ of $\triangle A B C$. Let γ_{a} be the circle that is inside $\triangle A B C$, tangent to $A B$ and $A C$, and tangent externally to ω_{a}. Define $\omega_{b}, \omega_{c}, \gamma_{b}$, and γ_{c} similarly. Then the inner Apollonius circle of $\gamma_{a}, \gamma_{b}, \gamma_{c}$ (blue circle in Figure 90), is internally tangent to the inner Apollonius circle of $\omega_{a}, \omega_{b}, \omega_{c}$ (green circle in Figure 90).

Figure 90. green and blue circles touch at P. Red arcs have different angular measures.

Lemma 8.24. We have

$$
r \mathbb{W}=\frac{2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}}{2(a+b+c)}
$$

Proof. Recall that $\mathbb{W}=(4 R+r) / p$. We use the well-known identities $r=\Delta / p$, $R=a b c /(4 \Delta)$, and $\Delta=\sqrt{p(p-a)(p-b)(p-c)}$. Then we have

$$
\begin{aligned}
r \mathbb{W} & =r\left(\frac{4 R+r}{p}\right) \\
& =\left(\frac{\Delta}{p}\right)\left(4 \cdot \frac{a b c}{4 \Delta}+\frac{\Delta}{p}\right) / p \\
& =\left(\frac{a b c}{p}+\frac{\Delta^{2}}{p^{2}}\right) / p \\
& =\frac{1}{p}\left(\frac{a b c}{p}+\frac{p(p-a)(p-b)(p-c)}{p^{2}}\right) .
\end{aligned}
$$

Letting $p=(a+b+c) / 2$ and simplifying, gives

$$
r \mathbb{W}=\frac{2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}}{2(a+b+c)}
$$

Lemma 8.25 (Length of $A G_{e}$). We have

$$
A G_{e}=\frac{(p-a) \sqrt{a(p-a)\left[a p-(b-c)^{2}\right]}}{p r \mathbb{W}}
$$

Proof. The distance from a vertex of a triangle to its Gergonne point is known. From Property 2.1.1 in [26], we have

$$
\begin{equation*}
A G_{e}=\frac{(b+c-a) \sqrt{a(b+c-a)\left[2 a p-2(b-c)^{2}\right]}}{2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}} \tag{18}
\end{equation*}
$$

From Lemma 8.24, this can be written as

$$
A G_{e}=\frac{(b+c-a) \sqrt{a(b+c-a)\left[2 a p-2(b-c)^{2}\right]}}{4 p r \mathbb{W}}
$$

Noting that $b+c-a=2(p-a)$, gives us our result.
Lemma 8.26. Let the touch points of the incircle of $\triangle A B C$ with its sides be L, M, and N, as shown in Figure 91. Then

$$
\frac{L G_{e}}{A G_{e}}=\frac{(p-b)(p-c)}{a(p-a)}
$$

Figure 91.

Proof. By definition, G_{e} is the intersection of $A L$ and $B M$. Applying Menelaus' Theorem to $\triangle A L C$ with transversal $B M$ gives

$$
A G_{e} \cdot B L \cdot C M=L G_{e} \cdot B C \cdot A M
$$

or

$$
\left(A G_{e}\right)(p-b)(p-c)=\left(L G_{e}\right)(a)(p-a)
$$

which is equivalent to our desired result.
Corollary 8.27. With the same terminology,

$$
\frac{A L}{A G_{e}}=\frac{A G_{e}+L G_{e}}{A G_{e}}=1+\frac{L G_{e}}{A G_{e}}=1+\frac{(p-b)(p-c)}{a(p-a)} .
$$

Lemma 8.28. We have

$$
\mathbb{W}=\frac{r}{p-a}\left(\frac{a(p-a)}{(p-b)(p-c)}+1\right) .
$$

Proof. Using the well known formulas $\Delta^{2}=p(p-a)(p-b)(p-c)$ and $r=\Delta / p$, we get

$$
\begin{align*}
\frac{r}{p-a}\left(\frac{a(p-a)}{(p-b)(p-c)}+1\right) & =\frac{a r}{(p-b)(p-c)}+\frac{r}{p-a} \\
& =r \cdot \frac{a(p-a)+(p-b)(p-c)}{(p-a)(p-b)(p-c)} \\
& =\frac{\Delta}{p} \cdot \frac{a(p-a)+(p-b)(p-c)}{(p-a)(p-b)(p-c)} \\
& =\frac{a(p-a)+(p-b)(p-c)}{\Delta} \\
& =\frac{a \cdot \frac{b+c-a}{2}+\frac{(a-b+c)(a+b-c)}{4}}{\Delta} \\
& =\frac{2 a b+2 b c+2 a c-a^{2}-b^{2}-c^{2}}{4 \Delta} \\
& =\frac{4 p r \mathbb{W}}{4 \Delta} \tag{byLemma8.24}\\
& =\mathbb{W} .
\end{align*}
$$

Theorem 8.29 (Radius of Inner Apollonius Circle). Let ρ_{i} be the radius of the inner Apollonius circle of γ_{a}, γ_{b}, and γ_{c}. Then

$$
\rho_{i}=r t \mathbb{W}-r .
$$

Proof. By Corollary 8.17, C_{i} and the incircle are homothetic with G_{e} being the external center of similitude. Under this homothety, U_{a} maps to L. Thus

$$
\frac{G_{e} U_{a}}{G_{e} L}=\frac{\rho_{i}}{r} .
$$

We can write this as

$$
\frac{\rho_{i}}{r}=\frac{A G_{e}-A U_{a}}{A L-A G_{e}}=\frac{A G_{e}-A L \cdot \frac{\rho_{a}}{r}}{A L-A G_{e}}=\frac{1-\frac{A L}{A G_{e}} \cdot \frac{\rho_{a}}{r}}{\frac{A L}{A G_{e}}-1}
$$

because $A U_{a}=A L \cdot \frac{\rho_{a}}{r}$ (from Theorem 4.14). Now

$$
\frac{A L}{A G_{e}}=\frac{A G_{e}+\overline{L G_{e}}}{A G_{e}}=1+\frac{L G_{e}}{A G_{e}} .
$$

From Lemma 8.26, we have

$$
\frac{L G_{e}}{A G_{e}}=\frac{(p-b)(p-c)}{a(p-a)}
$$

so

$$
\frac{\rho_{i}}{r}=\frac{1-\left(1+\frac{(p-b)(p-c)}{a(p-a)}\right) \cdot \frac{\rho_{a}}{r}}{\frac{(p-b)(p-c)}{a(p-a)}}
$$

which is equivalent to

$$
\frac{\rho_{i}}{r}+1=\left(1-\frac{\rho_{a}}{r}\right)\left(\frac{a(p-a)}{(p-b)(p-c)}+1\right) .
$$

We also know that

$$
1-\frac{\rho_{a}}{r}=\frac{r t}{p-a}
$$

from Corollary 4.7. Thus

$$
\frac{\rho_{i}}{r}+1=\frac{r t}{p-a}\left(\frac{a(p-a)}{(p-b)(p-c)}+1\right) .
$$

By Lemma 8.28, this reduces to

$$
\frac{\rho_{i}}{r}+1=t \mathbb{W},
$$

so $\rho_{i} / r=t \mathbb{W}-1$ or $\rho_{i}=r t \mathbb{W}-r$.
Note that r_{i} will be negative if the inner Apollonius circle is internally tangent to γ_{a}, γ_{b}, and γ_{c}. This will happen if $t \mathbb{W}<1$.

Open Question 3. Is there a simpler proof of Theorem 8.29?
Corollary 8.30. We have

$$
\rho_{i}=2 r-\left(\rho_{a}+\rho_{b}+\rho_{c}\right) .
$$

Proof. From Theorem 7.5, we have $r t \mathbb{W}=3 r-\left(\rho_{a}+\rho_{b}+\rho_{c}\right)$. Therefore, we have $\rho_{i}=r t \mathbb{W}-r=3 r-\left(\rho_{a}+\rho_{b}+\rho_{c}\right)-r=2 r-\left(\rho_{a}+\rho_{b}+\rho_{c}\right)$.

Theorem 8.31. The circles γ_{a}, γ_{b}, and γ_{c} meet in a point (Figure 92) if and only if $t=1 / \mathbb{W}$.

Figure 92. $\gamma_{a}, \gamma_{b}, \gamma_{c}$ concur

Proof. The three circles concur if and only if the radius of the inner Apollonius circle is 0 , that is, when $\rho_{i}=0$. By Theorem 8.29, $\rho_{i}=r t \mathbb{W}-r$. So $\rho_{i}=0$ if and only if $r=r t \mathbb{W}$ or $1=t \mathbb{W}$ since $r>0$. In other words, when $t=1 / \mathbb{W}$.

Corollary 8.32. If $t=1 / \mathbb{W}$, the circles γ_{a}, γ_{b}, and γ_{c} all pass through G_{e}, the Gergonne point of $\triangle A B C$.

Proof. The common chord of each pair of circles is the radical axis of those two circles. Since the three common chords meet at the point of concurrence of the three circles, this point must be the radical center of the three circles. By Theorem 6.4, this is the Gergonne point of $\triangle A B C$.

Theorem 8.33. The circles ω_{a}, ω_{b}, and ω_{c} meet in a point (Figure 93) if and only if $\theta=120^{\circ}$.

Figure 93. $\omega_{a}, \omega_{b}, \omega_{c}$ concur

Proof. Suppose the three arcs meet at P. Let $\angle P A C=x, \angle P B A=y$, and $\angle P C B=z$. Then $\angle B A P=A-x, \angle C B P=B-y$, and $\angle A C P=C-z$. An angle inscribed in a circle is measured by half its intercepted arc. So

$$
\begin{aligned}
& 2(A-x)+2 y=\theta, \\
& 2(B-y)+2 z=\theta, \\
& 2(C-z)+2 x=\theta .
\end{aligned}
$$

Adding these three equations gives

$$
3 \theta=2(A+B+C)=2\left(180^{\circ}\right)=360^{\circ}
$$

or $\theta=120^{\circ}$.
Theorem 8.34 (Radius of Outer Apollonius Circle). Let ρ_{o} be the radius of the outer Apollonius circle of γ_{a}, γ_{b}, and γ_{c}. Then

$$
\rho_{o}=\frac{r}{3} t \mathbb{W}+r .
$$

Proof. Let G_{e} be the Gergonne point of $\triangle A B C$. Similar to Corollary 8.17, C_{o} and the incircle are homothetic with G_{e} being the external center of similitude. Let U_{a} and V_{a} be the points where $A G_{e}$ meets γ_{a}, with V_{a} closer to A. Let W_{a} be the point where $U_{a} V_{a}$ intersects the incircle (Figure 94).

Figure 94. brown and red circles are homothetic at G_{e}

Under this homothety, V_{a} maps to W_{a}. Thus

$$
\begin{align*}
\frac{\rho_{o}}{r} & =\frac{G_{e} V_{a}}{G_{e} W_{a}}=\frac{A G_{e}-A V_{a}}{A G_{e}-A W_{a}} \\
& =\frac{A G_{e} / A L-A V_{a} / A L}{A G_{e} / A L-A W_{a} / A L}, \tag{19}
\end{align*}
$$

From Theorem 4.17.

$$
A V_{a}=\frac{(p-a-r t) \sqrt{a(p-a)}}{\sqrt{a p-(b-c)^{2}}} .
$$

From Corollary 8.27,

$$
\frac{A L}{A G_{e}}=1+\frac{(p-b)(p-c)}{a(p-a)}
$$

so

$$
\frac{A G_{e}}{A L}=\frac{a(p-a)}{a(p-a)+(p-b)(p-c)} .
$$

From the homothety, center A that maps γ_{a} to the incircle,

$$
\frac{A U_{a}}{A L}=\frac{\rho_{a}}{r} .
$$

From Corollary 4.18, we have

$$
\frac{A V_{a}}{A U_{a}}=\frac{a(p-a)}{a p-(b-c)^{2}}
$$

Multiplying the previous two equations gives

$$
\frac{A V_{a}}{A L}=\frac{a(p-a)}{a p-(b-c)^{2}} \cdot \frac{\rho_{a}}{r} .
$$

From the homothety, center A that maps γ_{a} to the incircle,

$$
\frac{A W_{a}}{A V_{a}}=\frac{r}{\rho_{a}} .
$$

Multiplying the previous two equations gives

$$
\frac{A W_{a}}{A L}=\frac{a(p-a)}{a p-(b-c)^{2}} .
$$

Substituting the values for the ratios found into equation (19) gives

$$
\begin{aligned}
\frac{\rho_{o}}{r} & =\frac{A G_{e} / A L-A V_{a} / A L}{A G_{e} / A L-A W_{a} / A L}, \\
& =\frac{\frac{a(p-a)}{a(p-a)+(p-b)(p-c)}-\frac{a(p-a)}{a p-(b-c)^{2}} \cdot \frac{\rho_{a}}{r}}{\frac{a(p-a)}{a(p-a)+(p-b)(p-c)}-\frac{a(p-a)}{a p-(b-c)^{2}}} .
\end{aligned}
$$

Simplifying this algebraically gives

$$
\frac{\rho_{o}}{r}=1+\frac{2 r t}{3} \cdot \frac{2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}}{(a+b-c)(b+c-a)(c+a-b)} .
$$

Applying Lemma 8.24 gives

$$
\begin{aligned}
\frac{\rho_{o}}{r}-1 & =\frac{2 r t}{3} \cdot \frac{4 r p \mathbb{W}}{(a+b-c)(b+c-a)(c+a-b)} \\
& =\frac{2 r t}{3} \cdot \frac{4 r p \mathbb{W}}{8(p-c)(p-a)(p-b)} \\
& =\frac{t}{3} \cdot \frac{(r p)^{2} \mathbb{W}}{p(p-c)(p-a)(p-b)} \\
& =\frac{t}{3} \cdot \frac{\Delta^{2} \mathbb{W}}{\Delta^{2}} \\
& =\frac{t \mathbb{W}}{3}
\end{aligned}
$$

using the well-known formulas $\Delta=r p$ and $\Delta=\sqrt{p(p-a)(p-b)(p-c)}$. Thus, $\rho_{o}=r t \mathbb{W} / 3+r$.
Open Question 4. Is there a simpler proof of Theorem 8.34?
Corollary 8.35. We have

$$
\frac{\rho_{i}+r}{\rho_{o}-r}=3 .
$$

Proof. This follows immediately from Theorems 8.29 and 8.34 .
Remember when applying this result, that ρ_{i} is to be considered negative when the inner Apollonius circle is internally tangent to γ_{a}, γ_{b}, and γ_{c}, as shown in Figure 96.
The line through the incenter of a triangle and the Gergonne point of that triangle is called the Soddy line of the triangle.

Theorem 8.36. For a general triad of circles associated with $\triangle A B C$, let U be the center of the inner Apollonius circle of γ_{a}, γ_{b}, and γ_{c}. Let V be the center of the outer Apollonius circle of γ_{a}, γ_{b}, and γ_{c}. Then U and V lie on the Soddy line of the triangle and $U I: I V=3: 1$ (Figure 95).

Figure 95. $U I: I V=3: 1$

Proof. All distances along the Soddy line will be signed. We have

$$
\frac{U I}{G_{e} I}=\frac{U G_{e}+G_{e} I}{G_{e} I}=\frac{U G_{e}}{G_{e} I}+1=\frac{\rho_{i}}{r}+1=\frac{\rho_{i}+r}{r}
$$

and

$$
\frac{I V}{G_{e} I}=\frac{G_{e} V-G_{e} I}{G_{e} I}=\frac{G_{e} V}{G_{e} I}-1=\frac{\rho_{o}}{r}-1=\frac{\rho_{o}-r}{r} .
$$

Dividing gives

$$
\frac{U I}{I V}=\frac{\rho_{i}+r}{\rho_{o}-r} .
$$

The result now follows from Corollary 8.35 .
Open Question 5. Is there a simple geometric proof that $U I / I V=3$?

Figure 96. $U I: I V=3: 1$
If the inner Apollonius circle is internally tangent to the three circles as in Figure 96 , then U and V still lie on the Soddy line, but the points on that line occur in the order G_{e}, U, I, V.

Corollary 8.37. We have

$$
\frac{G_{e} I}{I V}=\frac{r}{\rho_{o}-r} .
$$

Corollary 8.38. We have the extended proportion

$$
U G_{e}: G_{e} I: I V=\rho_{i}: r: \rho_{o}-r
$$

It should be noted that the distance from G_{e} to I in terms of parts of the triangle is known. From [27, p. 184], we have the following result.

Theorem 8.39. We have

$$
G_{e} I=\frac{r}{4 R+r} \sqrt{(4 R+r)^{2}-3 p^{2}}=r \sqrt{1-3 / \mathbb{W}^{2}} .
$$

This allows us to express any of the distances between the points U, V, G_{e}, and I in terms of R, r, and p by using Corollary 8.38 .
Theorem 8.40. For a general triad of circles associated with $\triangle A B C$, the inradius r and the radii ρ_{i} and ρ_{o} of the Apollonius circles satisfy the relation

$$
3 \rho_{o}=\rho_{i}+4 r .
$$

Proof. This is algebraically equivalent to Corollary 8.35 .

Theorem 8.41. For a general triad of circles associated with $\triangle A B C$, the radii ρ_{i} and ρ_{o} of the Apollonius circles and the radii ρ_{a}, ρ_{b}, and ρ_{c} of the three circles in the triad satisfy the relation

$$
3 \rho_{o}=2\left(\rho_{a}+\rho_{b}+\rho_{c}\right)+3 \rho_{i} .
$$

Proof. From Theorem 7.5, we have

$$
\rho_{a}+\rho_{b}+\rho_{c}=3 r-r t \mathbb{W} .
$$

From Theorems 8.29 and 8.34, we have

$$
3 \rho_{o}-3 \rho_{i}=6 r-2 r t \mathbb{W}=2\left(\rho_{a}+\rho_{b}+\rho_{c}\right)
$$

as desired.
Theorem 8.42. Let ρ_{i} be the radius of the inner Apollonius circle of γ_{a}, γ_{b}, and γ_{c}. Then

$$
\rho_{i}^{2}=\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}+2 r^{2}\left(t^{2}-1\right) .
$$

Proof. This follows algebraically by combining Theorems 8.29 and 7.8 .
When $\theta=180^{\circ}$, the arcs become semicircles, $t=1$, and this result agrees with Theorem 6.1 in [30].

9. Relationship with Semicircles

Many of the elements of our configuration are proportional to the corresponding elements when ω_{a}, ω_{b}, and ω_{c} are semicircles (i.e. when $\theta=180^{\circ}$ or $t=1$).
If x is any measurement or object, let x^{*} denote the same measurement or object when $\theta=180^{\circ}$, i.e. when the arcs are semicircles.
In [30], it was found that

$$
\begin{aligned}
& \rho_{a}^{*}=r\left(1-\tan \frac{A}{2}\right) \\
& \rho_{b}^{*}=r\left(1-\tan \frac{B}{2}\right) \\
& \rho_{c}^{*}=r\left(1-\tan \frac{C}{2}\right)
\end{aligned}
$$

and in Theorem 4.6, we found that

$$
\begin{aligned}
& \rho_{a}=r\left(1-\tan \frac{A}{2} \tan \frac{\theta}{4}\right) \\
& \rho_{b}=r\left(1-\tan \frac{B}{2} \tan \frac{\theta}{4}\right) \\
& \rho_{c}=r\left(1-\tan \frac{C}{2} \tan \frac{\theta}{4}\right)
\end{aligned}
$$

In other words, if $t=\tan \frac{\theta}{4}$, then we have the following results.
Theorem 9.1. The following identities are true.

$$
\begin{aligned}
\rho_{a}-r & =t\left(\rho_{a}^{*}-r\right) \\
\rho_{b}-r & =t\left(\rho_{b}^{*}-r\right) \\
\rho_{c}-r & =t\left(\rho_{c}^{*}-r\right)
\end{aligned}
$$

Theorem 9.2. The following identities are true.

$$
\begin{aligned}
\rho_{a}-\rho_{b} & =t\left(\rho_{a}^{*}-\rho_{b}^{*}\right) \\
\rho_{b}-\rho_{c} & =t\left(\rho_{b}^{*}-\rho_{c}^{*}\right) \\
\rho_{c}-\rho_{a} & =t\left(\rho_{c}^{*}-\rho_{a}^{*}\right)
\end{aligned}
$$

Let $T_{b c}$ denote the length of the common external tangent between circles γ_{b} and γ_{c}. Define $T_{a b}$ and $T_{c a}$ similarly.
In [30], it was found that $T_{a b}^{*}=T_{b c}^{*}=T_{c a}^{*}=2 r$. In Theorem 6.1, we found that $T_{a b}=T_{b c}=T_{c a}=2 r t$. This gives us the following result.

Theorem 9.3. The following identities are true.

$$
\begin{aligned}
T_{a b} & =t T_{a b}^{*} \\
T_{b c} & =t T_{b c}^{*} \\
T_{c a} & =t T_{c a}^{*}
\end{aligned}
$$

Using these, we can prove the following new result.
Theorem 9.4. Let $D_{b c}$ denote the distance between the centers of γ_{b} and γ_{c}. Define $D_{a b}$ and $D_{c a}$ similarly. Then the following identities are true.

$$
\begin{aligned}
D_{a b} & =t D_{a b}^{*} \\
D_{b c} & =t D_{b c}^{*} \\
D_{c a} & =t D_{c a}^{*}
\end{aligned}
$$

Proof. By symmetry, it suffices to prove the result for $D_{b c}$. Let E be the center of γ_{b} and let F be the center of γ_{c}. Let the common external tangent along $B C$ be $X Y$ as shown in Figure 97. Let the foot of the perpendicular from E to $F Y$ be H. Then in right triangle $E H F$, we have $E H=X Y=T_{b c}=t T_{b c}^{*}$ by Theorem 9.3. We also have $F H=\left|\rho_{c}-\rho_{b}\right|$. By Theorem 9.2, $F H=t\left|\rho_{c}^{*}-\rho_{a}^{*}\right|$. Since $\triangle E H F \sim \triangle E^{*} H^{*} F^{*}$, we must therefore have $D_{b c}=t D_{b c}^{*}$.

Figure 97. case where H lies between F and Y
Corollary 9.5. The triangles formed by the centers of $\gamma_{a}, \gamma_{b}, \gamma_{c}$ and $\gamma_{a}^{*}, \gamma_{b}^{*}, \gamma_{c}^{*}$ are similar.
Theorem 9.6. We have

$$
\rho_{i}+r=t\left(\rho_{i}^{*}+r\right) .
$$

Proof. This follows immediately from Theorem 8.29,

Theorem 9.7. We have

$$
\rho_{o}-r=t\left(\rho_{o}^{*}-r\right) .
$$

Proof. This follows immediately from Theorem 8.34 ,
Theorem 9.8. Let γ_{a}, γ_{b}, and γ_{c} be a general triad of circles associated with $\triangle A B C$. Let U be the center of the inner Apollonius circle of the circles in the triad. Let d_{a} denote the distance between U and the center of γ_{a}. Define d_{b} and d_{c} similarly. Then the following identities are true.

$$
\begin{aligned}
d_{a}-d_{b} & =t\left(d_{a}^{*}-d_{b}^{*}\right) \\
d_{b}-d_{c} & =t\left(d_{b}^{*}-d_{b}^{*}\right) \\
d_{c}-d_{a} & =t\left(d_{c}^{*}-d_{a}^{*}\right)
\end{aligned}
$$

Proof. Let ρ_{i} be the radius of the inner Apollonius circle. Then $d_{a}=\rho_{i}+\rho_{a}$ (Figure 98).

Figure 98. $d_{a}=\rho_{i}+\rho_{a}$
Similarly, $d_{b}=\rho_{i}+\rho_{b}$. Thus $d_{a}-d_{b}=\rho_{a}-\rho_{b}$. By Theorem 9.2,

$$
d_{a}-d_{b}=t\left(\rho_{a}^{*}-\rho_{b}^{*}\right)=t\left(d_{a}^{*}-d_{b}^{*}\right) .
$$

The same argument works for $d_{b}-d_{c}$ and $d_{c}-d_{a}$.
Theorem 9.9. If $u=E F, v=D F, w=D E$ are the distances between the centers of the circles γ_{a}, γ_{b}, and γ_{c}, we have

$$
\begin{aligned}
& u^{2}=\frac{a(p-a)\left[a p-(b-c)^{2}\right] t^{2}}{p^{2}} \\
& v^{2}=\frac{b(p-b)\left[b p-(c-a)^{2}\right] t^{2}}{p^{2}} \\
& w^{2}=\frac{c(p-c)\left[a p-(a-b)^{2}\right] t^{2}}{p^{2}}
\end{aligned}
$$

Proof. This follows from Theorem 9.4 and the simplified values of u^{*}, v^{*}, and w^{*} found in [30].

10. Variations

We have studied the case where Ajima circle γ_{a} is inscribed in $\angle B A C$ and is inside $\triangle A B C$ and is externally tangent to circle ω_{a}.
There are actually four circles that are inscribed in $\angle B A C$ and are tangent to circle ω_{a}. These circles are shown in Figure 99 .

Figure 99. circles inscribed in $\angle A$ and tangent to red circle
Circle c_{1} is variation 1 and is the variation already studied. Note that circle c_{4} is inscribed in $\angle B A C$ and is outside $\triangle A B C$ as well as being externally tangent to circle ω_{a}. Circle c_{2} and c_{3} are internally tangent to ω_{a}. The touch point of c_{2} and ω_{a} is inside $\triangle A B C$ while the touch point of c_{3} and ω_{a} is outside $\triangle A B C$.
Many of the results we found for variation 1 work for the other variations as well. We present below a few of these results. Proofs are omitted because they are similar to the proofs given for variation 1. Variants 2, 3, and 4, are shown in Figure 100.

Figure 100. variants 2 (green), 3 (blue), and 4 (orange)

The Catalytic Lemma

The Catalytic Lemma remains true except in some cases where the incenter is replaced by an excenter. Figure 101 shows variants 2,3 , and 4 . In each case, B, K, T, and an incenter/excenter lie on a circle.

Figure 101. four points lie on a circle

Protasov's Theorem

Protasov's Theorem remains true except in some cases where the incenter is replaced by an excenter. Figure 102 shows variants 2, 3, and 4. In each case, the blue line bisects the angle formed by the dashed lines.

Figure 102. blue line bisects angle formed by dashed lines

Theorem 2.10

Theorem 2.10 remains true except in some cases where the incenter is replaced by an excenter. Figure 103 shows variants 2, 3, and 4. In each case, the parallel to $B E$ through an incenter or excenter meets $A C$ at F, where E is the point where ω_{a} meets $A C$. Then $I F=F K$ where K is the point where γ_{a} touches $A C$.

Figure 103. blue lines are congruent

Theorem 2.7

Theorem 2.7 remains true except in some cases where the incenter is replaced by an excenter. Figure 103 shows variants 2, 3, and 4. In each case, the line through T and an incenter or excenter meets ω_{a} at a point on the perpendicular bisector of $B C$ (opposite T).

Figure 104. T, N, and an incenter or excenter lie on a line.

Ajima's Theorem

Similar formulas for the radii of the variant circles can be found similar to Ajima's Theorem. These are shown in Figure 105, where r_{a} denotes the radius of the A excircle of $\triangle A B C$.

Figure 105.

The Paasche Analog

The Paasche Analog (Theorem 6.7) remains true. If γ_{a} is any one of these variant circles, and if T_{a} is the touch point of γ_{a} with ω_{a}, with T_{b} and T_{c} defined similarly, then $A T_{a}, B T_{b}$, and $C T_{c}$ are concurrent. See Figure 106 for one case.

Figure 106.

References

[1] Titu Andreescu and Zuming Feng, Mathematical Olympiads, Problems and solutions from around the world 1999-2000, Mathematical Association of America: 2002.
[2] Jean-Louis Ayme, Du Théorème de Reim.
http://jl.ayme.pagesperso-orange.fr/Docs/Du\ theoreme\ de\ Reim\ au\% 20theoreme\%20des\% $\%$ 20six\% 20 cercles.pdf
[3] Jean-Louis Ayme, Un Remarquable Résultat de Vladimir Protassov. http://jl.ayme.pagesperso-orange.fr/Docs/Un\ remarquable\ resultat\ de\% 20Vladimir\%20Protassov.pdf
[4] Jean-Louis Ayme, Haute Géométrie Synthétique: Problème par Ercole Suppa et Stanley Rabinowitz.
https://les-mathematiques.net/vanilla/uploads/editor/la/afx2tbda0bn3.pdf
[5] Jean-Louis Ayme, Deux segments égaux. August 7, 2023.
https://les-mathematiques.net/vanilla/index.php?p=/discussion/2335343
[6] Francisco Javier Garcia Capitán, Problem 2428, Romantics of Geometry Facebook Group, October 2018.
https://www.facebook.com/groups/parmenides52/posts/1926266464153717/
[7] John Casey, A Sequel to the First Six Books of the Elements of Euclid: Containing an Easy Introduction to Modern Geometry, with Numerous Examples, 4th edition. Hodges, Figgis \& Company, 1886.
https://books.google.com/books?id=kSAWAAAAYAAJ
[8] Chi Nguyen Chuong, Solution to Problem 13268, Romantics of Geometry Facebook Group, Sept. 2, 2023.
https://www.facebook.com/groups/parmenides52/posts/6573024619477855/
[9] Jean-Pol Coulon, Comment on Problem 13196, Romantics of Geometry Facebook Group, August 272023.
https://www.facebook.com/groups/parmenides52/posts/6536265159820468/
[10] Nikolaos Dergiades, Construction of Ajima Circles via Centers of Similitude, Forum Geometricorum, 15(2015)203-209. https://forumgeom.fau.edu/FG2015volume15/FG201521.pdf
[11] Heinrich Dörrie. 100 Great Problems of Elementary Mathematics. Courier Corporation, 2013.
[12] Hidetosi Fukagawa and Dan Pedoe, Japanese Temple Geometry Problems, Charles Babbage Research Center, 1989.
[13] Hidetoshi Fukagawa and John F. Rigby, Traditional Japanese Mathematics Problems of the 18th \& 19th Centuries, SCT Publishing, 2002.
[14] Honma, ed., Zoku Kanji Sampō, Tohoku University Digital Collection, 1849.
[15] Sava Grozdev and Deko Dekov, Barycentric Coordinates: Formula Sheet, International Journal of Computer Discovered Mathematics, 1(2016)75-82.
https://www.journal-1.eu/2016-2/Grozdev-Dekov-Barycentric-Coordinates-pp. 75-82.pdf
[16] Tran Viet Hung, Problem 13000, Romantics of Geometry Facebook Group, July 172023. https://www.facebook.com/groups/parmenides52/posts/6421557417957910/
[17] Biro Istvan, Problem 13164, Romantics of Geometry Facebook Group, August 162023. https://www.facebook.com/groups/parmenides52/posts/6517913794988938/
[18] Roger A. Johnson, Advanced Eucliden Geometry, Dover, 2007.
[19] Clark Kimberling, Encyclopedia of Triangle Centers, entry for X(1123), the Paasche Point.
https://faculty.evansville.edu/ck6/encyclopedia/ETCPart2.html\#X1123
[20] Clark Kimberling, Encyclopedia of Triangle Centers, preamble to entry X(52805), Miyamoto-Moses Points. https://faculty.evansville.edu/ck6/encyclopedia/ETCPart2.html\#X52805
[21] Hiroshi Okumura, Problems 2023-1, Sangaku Journal of Mathematics, 7(2023)9-12. http://www.sangaku-journal.com/2023/SJM_2023_9-12_problems_2023-1.pdf
[22] Pascual2005, Rectangle with Incircles, AoPS Online, Feb. 2005. https://artof problemsolving.com/community/c6h28200p174793
[23] V. Protasov, Problem 162, Bulletin de l'APMEP, 375(Sept. 1990)510-512. https://www.apmep.fr/IMG/pdf/Problemes.pdf
[24] V. Protasov, The Feuerbach's Theorem: Exploring the inscribed and escribed circles of triangles, Quantum, (Nov/Dec 1999)4-9.
https://static.nsta.org/pdfs/QuantumV10N2.pdf (English)
https://kvant.ras.ru/1992/09/vokrug_teoremy_fejerbaha.htm (Russian)
[25] Stanley Rabinowitz, Pseudo-Incircles, Forum Geometricorum, 6(2006)107-115. https://forumgeom.fau.edu/FG2006volume6/FG200612.pdf
[26] Stanley Rabinowitz and Ercole Suppa, Computer Investigation of Properties of the Gergonne Point of a Triangle, International Journal of Computer Discovered Mathematics, 6(2021)6-42. https://www.journal-1.eu/2021/Stanley\ Rabinowitz, \%20Ercole\%20Suppa. \%20Computer\%20Investigation\%20of\%20Properties\%20of\%20the\%20Gergonne\% 20Point\%20of\%20a\%20Triangle, pp.6-42.pdf
[27] Stanley Rabinowitz, Inequalities Derived From Distances Between Triangle Centers, International Journal of Computer Discovered Mathematics, 7(2022)181-194. https://www.journal-1.eu/2022/7.\ Stanley\ Rabinowitz.\ Inequalities\% 20for\%20Distances\%20Between\%20Triangle\%20Centers,\%20pp.\%20181-194..pdf
[28] Stanley Rabinowitz, Problem 13268, Romantics of Geometry Facebook Group, Sept. 1, 2023.
https://www.facebook.com/groups/parmenides52/posts/6573024619477855/
[29] Ercole Suppa and Marian Cucoanes, Solution of Problem 2023-1-6, Sangaku Journal of Mathematics, 7(2023)21-28.
http://www.sangaku-journal.com/2023/SJM_2023_21-28_Suppa, Cucoanes.pdf
[30] Ercole Suppa and Stanley Rabinowitz, A Triad of Circles Associated with a Triangle, Sangaku Journal of Mathematics, 7(2023)54-70.
http://www.sangaku-journal.com/2023/SJM_2023_54-70_Suppa, Rabinowitz.pdf
[31] Ercole Suppa, Problem 13066, Romantics of Geometry Facebook Group, July 282023. https://www.facebook.com/groups/parmenides52/posts/6455731384540513/
[32] Ercole Suppa, Problem 13069, Romantics of Geometry Facebook Group, July 272023. https://www.facebook.com/groups/parmenides52/posts/6452171674896484/
[33] Ercole Suppa, Problem 13196, Romantics of Geometry Facebook Group, August 222023. https://www.facebook.com/groups/parmenides52/posts/6536265159820468/
[34] Ercole Suppa, Problem 13233, Romantics of Geometry Facebook Group, August 292023. https://www.facebook.com/groups/parmenides52/posts/6561326313981019/
[35] Ercole Suppa, Problem 13249, Romantics of Geometry Facebook Group, August 302023. https://www.facebook.com/groups/parmenides52/posts/6564990370281280/
[36] Wikipedia contributors. List of Trigonometric Identities: Half-angle formulae. In Wikipedia, The Free Encyclopedia. Retrieved July 24, 2023.
https://en.wikipedia.org/wiki/List_of_trigonometric_identities\#Half-angle_ formulae
[37] Wikipedia contributors. "Incircle and excircles: Distances between vertex and nearest touchpoints." In Wikipedia, The Free Encyclopedia. Retrieved 24 Jul. 2023.
https://en.wikipedia.org/wiki/Incircle_and_excircles\#Distances_between_ vertex_and_nearest_touchpoints
[38] Wikipedia contributors. Jacobi's theorem (geometry). In Wikipedia, The Free Encyclopedia. Retrieved August 10, 2023.
https://en.wikipedia.org/wiki/Jacobi\'s_theorem_(geometry)
[39] Yetti, Concyclic points with triangle incenter, AoPS Online, June 2005. https://artof problemsolving.com/community/c6h41667p262450
[40] Paul Yiu, Introduction to the Geometry of the Triangle, December 2012. http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry121226.pdf

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
 ${ }^{2}$ Corresponding author

[^1]: ${ }^{3}$ OK Geometry is a tool for analyzing dynamic geometric constructions, developed by Zlatan Magajna which can be freely downloaded from https://www.ok-geometry.com/.

