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A lattice point in the plane is a point with integer coordinates. A lattice polygon is a
polygon whose vertices are all lattice points. A polygon with n vertices will be referred to
as an n-gon.

Recently, Simpson [12] conjectured that for a convex lattice n-gon with area A, we must
have A ≥ cn3 for some constant c > 0.

I. Bárány has informed me [7] that this result is already known – namely that Arnol’d
[2] proved in 1980 that

A ≥ n3

2 · 163
.

It is the purpose of this note to give a better bound for A.

Theorem. If A is the area of a convex lattice n-gon, then

A >
n3

8π2
. (1)

Proof. Let K = P1P2 . . . Pn be a convex lattice n-gon with area A. Let the area of
�Pi−1PiPi+1 be Ai, where Pn+1 ≡ P1 and let

f(K) =
1

An

n∏

i=1

Ai.

By a result of Rényi and Sulanke [10], we have f(K) is maximal when and only when K
is an affine transformation of Rn, a regular n-gon. It is straightforward to show that this
maximum value is

f(Rn) =
(4 sin2 π

n

n

)n

so that f(K) ≤ f(Rn). But since sinx < x for x > 0, we have

n∏

i=1

Ai < An

(
4π2

n3

)n

.

By the pigeonhole principle, we can conclude that there is some i such that

Ai <
4π2A

n3
.
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From Pick’s Formula ([5], p. 209), it follows that the area of a lattice triangle is not less
than 1/2. Hence A > Ain

3/4π2 ≥ n3/8π2. This concludes the proof.

Let A(n) be the smallest possible area for a convex lattice n-gon. Then, since 2A(n) must
be an integer, we can round our lower bound for 2A up to the next larger integer and write

⌈
n3

4π2

⌉
≤ 2A(n) ≤ 2

(�n/2�
3

)
+ n − 2 (2)

where the upper bound comes from [12].

Let g(n) be the smallest number of lattice points that can be in the interior of a convex
lattice n-gon. The functions A(n) and g(n) are related by the formula

A(n) = g(n) + n/2 − 1

(Proposition 7.2.5 of [8] and Theorem 1 of [12]). Thus

⌈
n3

8π2
− n

2
+ 1

⌉
≤ g(n) ≤

(�n/2�
3

)
. (3)

This proves Rabinowitz’s conjecture [9], that there exists a constant c > 0 such that
g(n) > cn3.

We can compare our bounds for 2A(n) against the actual values obtained by Simpson [12]
and Rabinowitz [9]:

lower bound actual value upper bound
n for 2A(n) of 2A(n) for 2A(n)

3 1 1 1
4 2 2 2
5 4 5 5
6 6 6 6
7 9 13 13
8 13 14 14
9 19 21 27

10 26 28 28
11 34 [39,43] 49
12 44 48 50
13 56 65 81
14 70 80 82
15 86 [99,109] 125
16 104 118 126
17 125 [147,173] 183
18 148 174 184
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19 174 [209,241] 257
20 203 242 258
21 235 [285,327] 349
22 270 328 350

The square brackets define a closed interval known to contain the value.

Related inequalities of interest can be found in [1], [3], [4], [6], and [11].

Open Questions.

1. What is the exact value of A(11)?

2. Can the bounds for A(n) in equation (2) be improved?
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Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 2(1963)75–84.
[11] Wolfgang M. Schmidt, “Integer Points on Curves and Surfaces”, Monatshefte für

Mathematik. 99(1985)45–72.
[12] R. J. Simpson, “Convex Lattice Polygons of Minimum Area”, Bulletin of the Aus-

tralian Mathematical Society. 42(1990)353–367.


