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Abstract. In his seminal paper on triangle centers, Clark Kimberling made a
number of conjectures concerning the distances between triangle centers. For
example, if D(i, j) denotes the distance between triangle centers X; and X;, Kim-
berling conjectured that D(6,1) < D(6,3) for all triangles. We use symbolic
mathematics techniques to prove these conjectures. In addition, we prove stronger
results, using best-possible constants, such as D(6,1) < (2 — v/3)D(6,3).
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1. INTRODUCTION

Let X, denote the nth named triangle center as cataloged in the Encyclopedia of
Triangle Centers [4]. Let X,;X; denote the distance between X; and X;. We will
also write this as D(i, 7).

In his seminal paper on triangle centers [3], Clark Kimberling made a number
of conjectures concerning the distances between pairs of triangle centers. For
example, Kimberling conjectured that D(6,1) < D(6,3) for all triangles.

He also conjectured the truth of many chains of inequalities, such as the following.
X3X9 < X3Xj0 < X3Xp < X3X 12 < X3X7 < X3X,.

Kimberling reached these conjectures by using a computer to examine 10,740 dif-
ferent shaped triangles and numerically computing the coordinates for the centers.
Upon determining that the inequality held for each of these 10,740 triangles, he
then conjectured that the inequality was true for all triangles.

With the advances in computers and symbolic algebra systems, it is now possible
to prove these conjectures using exact symbolic computation.

IThis article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2. BARYCENTRIC COORDINATES

We use barycentric coordinates in this study.

are shown in Table [I| where
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The barycentric coordinates for
triangle centers X; through X, in terms of the sides of the triangle, a, b, and c,

Sz%\/(aer—C)(a—b+0)(—a+b+c)(a+b+c).

Only the first barycentric coordinate is given, because if f(a,b,c) is the first
barycentric coordinate for a point P, then the barycentric coordinates for P are

(f(a, b,c): f(b,c,a): f(e a, b)>

These were derived from [4].

TABLE 1. Barycentric coordinates for the first 20 centers

first barycentric coordinate for X,

+b2 )(

b2 + ?)

2b2 + b4

— 20%¢?

a

1

a*(a® — 2)
( 2

ct

a’

(a+b—c)la—b+c)

a—b—rc

OO0 | O T =W I N~ B

ala—b—c)

—_
@)

b+ c

—_
—_

(b—c)*(—a+b+c)

—_
[\

(a+b—c)la—b+c)(b+c)?

—_
w

at —2(b? — )% 4 a?(b? + ¢ + 2v/359)

—_
S

at —2(0* — )2+ a?(b? + 2 — 2v/39)

—_
(S

a2(\/§(a2 —p2— 2

—25)

—_
(=}

a2(\/§(a2 — 2 — 2

)+ 29)

17

a? +b* — & +2v39)(a?

— 2+ +2V359)

(
18| (a® + b* — & — 2v/39)(a?

— b2 + 2 — 21/39)

19 | a(a® + b* — ) (a?

— b+ )

20 | 3a®* — 2a%b% — b* — 242 + 2% — ¢

4

To find the distance between two centers, we used the following formula which

comes from [2].

Proposition 1. Given two points P =

(ur,v1,wy) and Q =

(ug, v, ws) in nor-

malized barycentric coordinates. Denote x = u; —us, y = vy —vy and z = wy — Ws.

Then the distance between P and @ is

V—atyz —

brx —

ccxy.
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3. GRAPHS

For n, i, and j ranging from 1 to 20, we used Algorithm B from [5] to check every
inequality of the form D(n,:7) < D(n,j). Algorithm B is based on Blundon’s
Fundamental Inequality [I]. Figure n shows a graph of the results. An arrow
from node 7 to node j means that D(n,i) < D(n,j) for all triangles. No arrow
means the inequality does not hold for all triangles. Since we used exact symbolic
computations, these results are theorems and not conjectures. To avoid radicals,
we replaced inequalities of the form D(a, b) < D(c,d) by the equivalent inequality
D(a,b)? < D(c,d)*.

FIGURE 2. X, inequalities. An arrow from ¢ to j means XoX; < Xo.X;.



om ¢ to j means X3X; < X3Xj;.

om ¢ to j means X, X; < Xy X,
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FIGURE 6. Xj inequalities. An arrow from 7 to j means X X; < X6Xj.



FIGURE 8. Xy inequalities. An arrow from ¢ to j means XgX; < XgXj.
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FIGURE 11. Xj; inequalities. An arrow from 7 to j means X1;.X; < X1.Xj.

FIGURE 12. X, inequalities. An arrow from 7 to j means Xi2X; < X2.Xj.
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FIGURE 13. X3 inequalities. An arrow from 7 to j means X;3X; < X 3.X;.

FIGURE 14. Xy, inequalities. An arrow from i to j means X14.X; < X14.X;.
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FIGURE 16. X4 inequalities. An arrow from ¢ to j means Xi6X; < Xi6X;.
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FIGURE 17. X7 inequalities. An arrow from ¢ to j means X;7.X; < Xy7.Xj.

There were no inequalities found for n = 18. In other words, there were no
inequalities of the form D(18,i) < D(18,j) for any ¢ and j with 1 < i < 20,

1<5<20,i#18,j+#18, and i # ;.

FIGURE 18. There are no inequalities of the form X;3X; < X;3X;.

FIGURE 19. X4 inequalities. An arrow from i to j means X;9.X; < X19.Xj.
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FIGURE 20. Xy inequalities. An arrow from 4 to j means Xy X; < X9 Xj.

Examining these graphs, we note that there are a few loops. An arrow from i
to j and an arrow from j to ¢ in Figure n means that D(n,i) < D(n,j) and
D(n,j) < D(n,7). This implies that D(n,i) = D(n,j). Three such equalities
were noticed: D(1,10) = D(8,10), D(3,4) = D(3,20), and D(3,5) = D(4,5).
These equalities were noticed by Kimberling in 3, Table 5.4]. These correspond
to the (now) well-known facts that in all triangles, X is the midpoint of X; X,
X3 is the midpoint of X, X5, and X5 is the midpoint of X35X}.

Since we only investigated inequalities between distances formed by three triangle

centers, this does not mean that we can conclude that there aren’t any other
equalities of the form D(iy,12) = D(is,i4), where iy, 19, i3, and i, are all distinct.

To check for such equalities, we ran a separate Mathematica program that exam-
ined all distances of the form D(i, j) where i and j are distinct integers between
1 and 20, looking for duplicate distances. No new equalities were found. This lets
us state the following result.

Proposition 2. The only pairs of centers from among the first 20 centers that
have equal distances are the following.

D(1,10) = D(8, 10)
D(3,4) = D(3,20)
D(3,5) = D(4,5)
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4. BOUNDS

Some of the inequalities from Section [3| can be strengthened. For example, from
Figure[6] one can see that D(6,2) < D(6,10). However, the stronger inequality

D(6,2) < % (1++2) D(6,10)

is true. To find the best such inequalities, we applied Algorithm K from [5] to
every inequality of the form

D(n,i) < kD(n,j) or D(n,i)>kD(n,j)

for n, i, and j ranging from 1 to 10 with ¢ < j to find the smallest (resp. largest)
constant k£ making the inequality true. The results are given below, shown as

D
lower and upper bounds for D((n, Z)) Lower bounds of 0 and upper bounds of co
n,J

are omitted.

D(1,2
For example, 0 < Dglj 43 < oo would mean that Algorithm K proved that there

D(1,2)
(1,4)

is no constant k£ > 0 such that & <
D(1,2)
D(1,4)

Theorem 1. The following bounds involving distances from Xy hold for all tri-
angles.

is true for all triangles, and that there

-

is no constant k such that < k is true for all triangles.
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Theorem 2. The following bounds involving distances from Xy hold for all tri-

angles.

< =[S
™
|7 -
mle i R R N R
VI VI VI VI I Vi . .
0O " O ©|0 ©|O T Do I~ T+ ooy Y
NN N adad dladdaacdaaddaaaldafQadaaaaadaagda
QI QAR AR AR QAR AR QAR Q Q
VI 2 VI VI VI VI VI VI VI VI
— N —= N =N N — [a] — | [a] — —
<t
Mmoo Mo P= Fo o H~ o Ho Ti= oo o~ v
Nl N dladaadaadadaadaacacdaadadafaacaadaadala oala
QR QIR RANRAR AN AR AQ]IR QAR AR AR
VI VI VI VI 4 VI VI VI VI VI VI
— | <t — — — — — | [\ A — <t —|<f — |00
o~
o] — <t — — — |3 o I — | o~
VI VI VI VI VI I VI o Il
\./\./\./\./\./\./\./\./)\./\./\./\./\./\L/O —~|—~ |~ |~ |
— | = = = =~ = = | T = s o m|o m|~
NN dlad NN dladddadladadaaacddadaalaaodala oo
((((((((((((((D N e N | N N N N N
QRN QAR ANNR AR AR AIR AR QAR ARKARKRAIR
VI VI VI VI VI
ve} — | <A — |3 — | — |V
_
™
©



INEQUALITIES FOR DISTANCES BETWEEN TRIANGLE CENTERS
Theorem 3. The following bounds involving distances from X3 hold for all tri-
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angles.
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61372° — 14689z + 1442923 — 954722 + 36982 — 100
and Cy &~ 1.100851119 is the largest root of the same polynomial.

where C7 ~ 0.9002270330 is the second largest root of
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Theorem 4. The following bounds involving distances from X4 hold for all tri-

angles.
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where C5 ~ 1.104068697 is the positive root of 8z* — 3623 + 11322 — 692 — 25.
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Theorem 5. The following bounds involving distances from Xs hold for all tri-

angles.
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where Cy =~ 1.053322135 is the positive root of

61372 + 53352 + 6782 — 370222 — 94792 — 1225

and Cs =~ 1.194505073 is the positive root of

xt + 223 + 2227 — 3072 — 1.
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Theorem 6. The following bounds involving distances from Xg hold for all tri-
angles.

D(6,1) 1 _D(6,2)  5+42 D(6,3)
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where Cg ~ 7.8631112181 is the largest root of
69672962:2°+20159746562'% — 1608138087845+ 6038182698392: 14 —894980577861 212

+677249814873x'°—27403584458 728 +604185576842° — 678284286024 4+2909607844:>
+7744.
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Theorem 7. The following bounds involving distances from X7 hold for all tri-

angles.
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where C'; &~ 7.9776615835 is the largest root of
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Theorem 8. The following bounds involving distances from Xg hold for all tri-

angles.
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where Cy =~ 0.6817039304 is the smallest positive root of

8962 — 2184x> + 192422 — 758« + 121.
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Theorem 9. The following bounds involving distances from Xg hold for all tri-

angles.
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where Cy =~ 0.4870156430 is the smallest positive root of

307225 + 9304z* — 350962% + 4070822 — 25350z + 6137.
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Theorem 10. The following bounds involving distances from Xio hold for all
triangles.
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where C'g &~ 0.4870156430 is the smallest positive root of
50z* — 722° + 2227 — 2 + 1.
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