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Abstract. In his seminal paper on triangle centers, Clark Kimberling made a
number of conjectures concerning the distances between triangle centers. For
example, if D(i, j) denotes the distance between triangle centers Xi and Xj, Kim-
berling conjectured that D(6, 1) ≤ D(6, 3) for all triangles. We use symbolic
mathematics techniques to prove these conjectures. In addition, we prove stronger
results, using best-possible constants, such as D(6, 1) ≤ (2−
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1. Introduction

Let Xn denote the nth named triangle center as cataloged in the Encyclopedia of
Triangle Centers [4]. Let XiXj denote the distance between Xi and Xj. We will
also write this as D(i, j).

In his seminal paper on triangle centers [3], Clark Kimberling made a number
of conjectures concerning the distances between pairs of triangle centers. For
example, Kimberling conjectured that D(6, 1) ≤ D(6, 3) for all triangles.

He also conjectured the truth of many chains of inequalities, such as the following.

X3X9 ≤ X3X10 ≤ X3X2 ≤ X3X12 ≤ X3X7 ≤ X3X4.

Kimberling reached these conjectures by using a computer to examine 10,740 dif-
ferent shaped triangles and numerically computing the coordinates for the centers.
Upon determining that the inequality held for each of these 10,740 triangles, he
then conjectured that the inequality was true for all triangles.

With the advances in computers and symbolic algebra systems, it is now possible
to prove these conjectures using exact symbolic computation.

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2. Barycentric Coordinates

We use barycentric coordinates in this study. The barycentric coordinates for
triangle centers X1 through X20 in terms of the sides of the triangle, a, b, and c,
are shown in Table 1, where

S =
1

2

√
(a + b− c)(a− b + c)(−a + b + c)(a + b + c).

Only the first barycentric coordinate is given, because if f(a, b, c) is the first
barycentric coordinate for a point P , then the barycentric coordinates for P are(

f(a, b, c) : f(b, c, a) : f(c, a, b)
)
.

These were derived from [4].

Table 1. Barycentric coordinates for the first 20 centers

n first barycentric coordinate for Xn

1 a
2 1
3 a2(a2 − b2 − c2)
4 (a2 + b2 − c2)(a2 − b2 + c2)
5 c4 − a2b2 + b4 − a2c2 − 2b2c2

6 a2

7 (a + b− c)(a− b + c)
8 a− b− c
9 a(a− b− c)
10 b + c
11 (b− c)2(−a + b + c)
12 (a + b− c)(a− b + c)(b + c)2

13 a4 − 2(b2 − c2)2 + a2(b2 + c2 + 2
√

3S)

14 a4 − 2(b2 − c2)2 + a2(b2 + c2 − 2
√

3S)

15 a2(
√

3(a2 − b2 − c2)− 2S)

16 a2(
√

3(a2 − b2 − c2) + 2S)

17 (a2 + b2 − c2 + 2
√

3S)(a2 − b2 + c2 + 2
√

3S)

18 (a2 + b2 − c2 − 2
√

3S)(a2 − b2 + c2 − 2
√

3S)
19 a(a2 + b2 − c2)(a2 − b2 + c2)
20 3a4 − 2a2b2 − b4 − 2a2c2 + 2b2c2 − c4

To find the distance between two centers, we used the following formula which
comes from [2].

Proposition 1. Given two points P = (u1, v1, w1) and Q = (u2, v2, w2) in nor-
malized barycentric coordinates. Denote x = u1−u2, y = v1−v2 and z = w1−w2.
Then the distance between P and Q is√

−a2yz − bzx− c2xy.
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3. Graphs

For n, i, and j ranging from 1 to 20, we used Algorithm B from [5] to check every
inequality of the form D(n, i) ≤ D(n, j). Algorithm B is based on Blundon’s
Fundamental Inequality [1]. Figure n shows a graph of the results. An arrow
from node i to node j means that D(n, i) ≤ D(n, j) for all triangles. No arrow
means the inequality does not hold for all triangles. Since we used exact symbolic
computations, these results are theorems and not conjectures. To avoid radicals,
we replaced inequalities of the form D(a, b) ≤ D(c, d) by the equivalent inequality
D(a, b)2 ≤ D(c, d)2.
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Figure 1. X1 inequalities. An arrow from i to j means X1Xi ≤ X1Xj.
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Figure 2. X2 inequalities. An arrow from i to j means X2Xi ≤ X2Xj.



Stanley Rabinowitz 45

1

4

6 713

16 1920

2

5

1217

8

9

10

11

14

15

Figure 3. X3 inequalities. An arrow from i to j means X3Xi ≤ X3Xj.
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Figure 4. X4 inequalities. An arrow from i to j means X4Xi ≤ X4Xj.
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Figure 5. X5 inequalities. An arrow from i to j means X5Xi ≤ X5Xj.
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Figure 6. X6 inequalities. An arrow from i to j means X6Xi ≤ X6Xj.
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Figure 7. X7 inequalities. An arrow from i to j means X7Xi ≤ X7Xj.
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Figure 8. X8 inequalities. An arrow from i to j means X8Xi ≤ X8Xj.
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Figure 9. X9 inequalities. An arrow from i to j means X9Xi ≤ X9Xj.
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Figure 10. X10 inequalities. An arrow from i to j means X10Xi ≤ X10Xj.
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Figure 11. X11 inequalities. An arrow from i to j means X11Xi ≤ X11Xj.
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Figure 12. X12 inequalities. An arrow from i to j means X12Xi ≤ X12Xj.
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Figure 13. X13 inequalities. An arrow from i to j means X13Xi ≤ X13Xj.
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Figure 14. X14 inequalities. An arrow from i to j means X14Xi ≤ X14Xj.
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Figure 15. X15 inequalities. An arrow from i to j means X15Xi ≤ X15Xj.
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Figure 16. X16 inequalities. An arrow from i to j means X16Xi ≤ X16Xj.
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Figure 17. X17 inequalities. An arrow from i to j means X17Xi ≤ X17Xj.

There were no inequalities found for n = 18. In other words, there were no
inequalities of the form D(18, i) ≤ D(18, j) for any i and j with 1 ≤ i ≤ 20,
1 ≤ j ≤ 20, i 6= 18, j 6= 18, and i 6= j.
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Figure 18. There are no inequalities of the form X18Xi ≤ X18Xj.
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Figure 19. X19 inequalities. An arrow from i to j means X19Xi ≤ X19Xj.
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Figure 20. X20 inequalities. An arrow from i to j means X20Xi ≤ X20Xj.

Examining these graphs, we note that there are a few loops. An arrow from i
to j and an arrow from j to i in Figure n means that D(n, i) ≤ D(n, j) and
D(n, j) ≤ D(n, i). This implies that D(n, i) = D(n, j). Three such equalities
were noticed: D(1, 10) = D(8, 10), D(3, 4) = D(3, 20), and D(3, 5) = D(4, 5).

These equalities were noticed by Kimberling in [3, Table 5.4]. These correspond
to the (now) well-known facts that in all triangles, X10 is the midpoint of X1X8,
X3 is the midpoint of X4X20, and X5 is the midpoint of X3X4.

Since we only investigated inequalities between distances formed by three triangle
centers, this does not mean that we can conclude that there aren’t any other
equalities of the form D(i1, i2) = D(i3, i4), where i1, i2, i3, and i4 are all distinct.

To check for such equalities, we ran a separate Mathematica program that exam-
ined all distances of the form D(i, j) where i and j are distinct integers between
1 and 20, looking for duplicate distances. No new equalities were found. This lets
us state the following result.

Proposition 2. The only pairs of centers from among the first 20 centers that
have equal distances are the following.

D(1, 10) = D(8, 10)

D(3, 4) = D(3, 20)

D(3, 5) = D(4, 5)
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4. Bounds

Some of the inequalities from Section 3 can be strengthened. For example, from
Figure 6, one can see that D(6, 2) ≤ D(6, 10). However, the stronger inequality

D(6, 2) ≤ 1

3

(
1 +
√

2
)
D(6, 10)

is true. To find the best such inequalities, we applied Algorithm K from [5] to
every inequality of the form

D(n, i) ≤ kD(n, j) or D(n, i) ≥ kD(n, j)

for n, i, and j ranging from 1 to 10 with i < j to find the smallest (resp. largest)
constant k making the inequality true. The results are given below, shown as

lower and upper bounds for
D(n, i)

D(n, j)
. Lower bounds of 0 and upper bounds of ∞

are omitted.

For example, 0 ≤ D(1, 2)

D(1, 4)
≤ ∞ would mean that Algorithm K proved that there

is no constant k > 0 such that k ≤ D(1, 2)

D(1, 4)
is true for all triangles, and that there

is no constant k such that
D(1, 2)

D(1, 4)
≤ k is true for all triangles.

Theorem 1. The following bounds involving distances from X1 hold for all tri-
angles.

D(1, 2)

D(1, 3)
≤ 2

3

2
√

2

3
≤D(1, 2)

D(1, 6)

1

3
≤D(1, 2)

D(1, 7)

D(1, 2)

D(1, 8)
=

1

3

1

3
≤D(1, 2)

D(1, 9)
≤ 2

3

D(1, 2)

D(1, 10)
=

2

3

1

2
≤D(1, 3)

D(1, 4)

2 ≤D(1, 3)

D(1, 5)

1 +
√

3 ≤D(1, 3)

D(1, 6)

3

2
+
√

2 ≤D(1, 3)

D(1, 7)

1

2
≤D(1, 3)

D(1, 8)

1 ≤D(1, 3)

D(1, 9)

1 ≤ D(1, 3)

D(1, 10)

1 ≤D(1, 4)

D(1, 6)

2 ≤D(1, 4)

D(1, 7)

1

3
≤D(1, 6)

D(1, 7)

D(1, 6)

D(1, 8)
≤ 1

2
√

2

D(1, 6)

D(1, 9)
≤ 1

2

D(1, 6)

D(1, 10)
≤ 1√

2

D(1, 7)

D(1, 8)
≤ 1

D(1, 7)

D(1, 9)
≤ 1

D(1, 7)

D(1, 10)
≤ 2

1 ≤D(1, 8)

D(1, 9)
≤ 2

D(1, 8)

D(1, 10)
= 2

1 ≤ D(1, 9)

D(1, 10)
≤ 2
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Theorem 2. The following bounds involving distances from X2 hold for all tri-
angles.

D(2, 1)

D(2, 3)
≤ 2

D(2, 1)

D(2, 4)
≤ 1

D(2, 1)

D(2, 5)
≤ 4

6
√

2− 8 ≤D(2, 1)

D(2, 6)
≤ 1

1

4
≤D(2, 1)

D(2, 7)
≤ 1

D(2, 1)

D(2, 8)
=

1

2

1

2
≤D(2, 1)

D(2, 9)
≤ 2

D(2, 1)

D(2, 10)
= 2

D(2, 3)

D(2, 4)
=

1

2

D(2, 3)

D(2, 5)
= 2

1

2
≤D(2, 3)

D(2, 6)

1

2
≤D(2, 3)

D(2, 7)

1

4
≤D(2, 3)

D(2, 8)

1 ≤D(2, 3)

D(2, 9)

1 ≤ D(2, 3)

D(2, 10)

D(2, 4)

D(2, 5)
= 4

1 ≤D(2, 4)

D(2, 6)

1 ≤D(2, 4)

D(2, 7)

1

2
≤D(2, 4)

D(2, 8)

2 ≤D(2, 4)

D(2, 9)

2 ≤ D(2, 4)

D(2, 10)

1

4
≤D(2, 5)

D(2, 6)

1

4
≤D(2, 5)

D(2, 7)

1

8
≤D(2, 5)

D(2, 8)

1

2
≤D(2, 5)

D(2, 9)

1

2
≤ D(2, 5)

D(2, 10)

1

2
≤D(2, 6)

D(2, 7)
≤ 3

2

1

2
≤D(2, 6)

D(2, 8)
≤ 4 + 3

√
2

8

1 ≤D(2, 6)

D(2, 9)
≤ 3

2 ≤ D(2, 6)

D(2, 10)
≤ 2 +

3√
2

1

2
≤D(2, 7)

D(2, 8)
≤ 2

D(2, 7)

D(2, 9)
= 2

2 ≤ D(2, 7)

D(2, 10)
≤ 8

1 ≤D(2, 8)

D(2, 9)
≤ 4

D(2, 8)

D(2, 10)
= 4

1 ≤ D(2, 9)

D(2, 10)
≤ 4
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Theorem 3. The following bounds involving distances from X3 hold for all tri-
angles.

1 ≤D(3, 1)

D(3, 2)
≤ 3

1

3
≤D(3, 1)

D(3, 4)
≤ 1

2

3
≤D(3, 1)

D(3, 5)
≤ 2

√
3− 1 ≤D(3, 1)

D(3, 6)
≤ 1

1

17

(
7 + 4

√
2
)
≤D(3, 1)

D(3, 7)
≤ 1

1 ≤D(3, 1)

D(3, 8)

1 ≤D(3, 1)

D(3, 9)

1 ≤ D(3, 1)

D(3, 10)

D(3, 2)

D(3, 4)
=

1

3

D(3, 2)

D(3, 5)
=

2

3

1

3
≤D(3, 2)

D(3, 6)
≤ 1

1

3
≤D(3, 2)

D(3, 7)
≤ 1

1

3
≤D(3, 2)

D(3, 8)

1 ≤D(3, 2)

D(3, 9)

1 ≤ D(3, 2)

D(3, 10)

D(3, 4)

D(3, 5)
= 2

1 ≤D(3, 4)

D(3, 6)
≤ 3

1 ≤D(3, 4)

D(3, 7)
≤ 3

1 ≤D(3, 4)

D(3, 8)

3 ≤D(3, 4)

D(3, 9)

3 ≤ D(3, 4)

D(3, 10)

1

2
≤D(3, 5)

D(3, 6)
≤ 3

2

1

2
≤D(3, 5)

D(3, 7)
≤ 3

2

1

2
≤D(3, 5)

D(3, 8)

3

2
≤D(3, 5)

D(3, 9)

3

2
≤ D(3, 5)

D(3, 10)

C1 ≤
D(3, 6)

D(3, 7)
≤ C2

1 ≤D(3, 6)

D(3, 8)

1 ≤D(3, 6)

D(3, 9)

1 ≤ D(3, 6)

D(3, 10)

1 ≤D(3, 7)

D(3, 8)

1 ≤D(3, 7)

D(3, 9)

1 ≤ D(3, 7)

D(3, 10)

1

2
≤ D(3, 9)

D(3, 10)
≤ 1

where C1 ≈ 0.9002270330 is the second largest root of

6137x5 − 14689x4 + 14429x3 − 9547x2 + 3698x− 100

and C2 ≈ 1.100851119 is the largest root of the same polynomial.
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Theorem 4. The following bounds involving distances from X4 hold for all tri-
angles.

D(4, 1)

D(4, 2)
≤ 1

D(4, 1)

D(4, 3)
≤ 2

3

D(4, 1)

D(4, 5)
≤ 4

3

1 ≤D(4, 1)

D(4, 6)

1 ≤D(4, 1)

D(4, 7)
≤ 2

D(4, 1)

D(4, 8)
≤ 1

D(4, 1)

D(4, 9)
≤ 1

D(4, 1)

D(4, 10)
≤ 1

D(4, 2)

D(4, 3)
=

2

3

D(4, 2)

D(4, 5)
=

4

3

1 ≤D(4, 2)

D(4, 6)

1 ≤D(4, 2)

D(4, 7)

1

3
≤D(4, 2)

D(4, 8)
≤ 1

2

3
≤D(4, 2)

D(4, 9)
≤ 1

2

3
≤ D(4, 2)

D(4, 10)
≤ 1

D(4, 3)

D(4, 5)
= 2

3

2
≤D(4, 3)

D(4, 6)

3

2
≤D(4, 3)

D(4, 7)

1

2
≤D(4, 3)

D(4, 8)
≤ 3

2

1 ≤D(4, 3)

D(4, 9)
≤ 3

2

1 ≤ D(4, 3)

D(4, 10)
≤ 3

2

3

4
≤D(4, 5)

D(4, 6)

3

4
≤D(4, 5)

D(4, 7)

1

4
≤D(4, 5)

D(4, 8)
≤ 3

4

1

2
≤D(4, 5)

D(4, 9)
≤ 3

4

1

2
≤ D(4, 5)

D(4, 10)
≤ 3

4

D(4, 6)

D(4, 7)
≤ C3

D(4, 6)

D(4, 8)
≤ 1

D(4, 6)

D(4, 9)
≤ 1

D(4, 6)

D(4, 10)
≤ 1

D(4, 7)

D(4, 8)
≤ 1

D(4, 7)

D(4, 9)
≤ 1

D(4, 7)

D(4, 10)
≤ 1

1 ≤D(4, 8)

D(4, 9)
≤ 2

1 ≤ D(4, 8)

D(4, 10)
≤ 2

1 ≤ D(4, 9)

D(4, 10)
≤ 10

9

where C3 ≈ 1.104068697 is the positive root of 8x4 − 36x3 + 113x2 − 69x− 25.
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Theorem 5. The following bounds involving distances from X5 hold for all tri-
angles.

D(5, 1)

D(5, 2)
≤ 3

D(5, 1)

D(5, 3)
≤ 1

D(5, 1)

D(5, 4)
≤ 1

D(5, 1)

D(5, 8)
≤ 1

D(5, 1)

D(5, 9)
≤ 1

D(5, 1)

D(5, 10)
≤ 1

D(5, 2)

D(5, 3)
=

1

3

D(5, 2)

D(5, 4)
=

1

3

1

3
≤D(5, 2)

D(5, 6)

1

3
≤D(5, 2)

D(5, 7)

1

9
≤D(5, 2)

D(5, 8)
≤ 1

1

3
≤D(5, 2)

D(5, 9)
≤ 1

1

3
≤ D(5, 2)

D(5, 10)
≤ 1

D(5, 3)

D(5, 4)
= 1

1 ≤D(5, 3)

D(5, 6)

1 ≤D(5, 3)

D(5, 7)

1

3
≤D(5, 3)

D(5, 8)
≤ 3

1 ≤D(5, 3)

D(5, 9)
≤ 3

1 ≤ D(5, 3)

D(5, 10)
≤ 3

1 ≤D(5, 4)

D(5, 6)

1 ≤D(5, 4)

D(5, 7)

1

3
≤D(5, 4)

D(5, 8)
≤ 3

1 ≤D(5, 4)

D(5, 9)
≤ 3

1 ≤ D(5, 4)

D(5, 10)
≤ 3

D(5, 6)

D(5, 8)
≤ 1

D(5, 6)

D(5, 9)
≤ C4

D(5, 6)

D(5, 10)
≤ C5

D(5, 7)

D(5, 8)
≤ 1

D(5, 7)

D(5, 9)
≤ 1

D(5, 7)

D(5, 10)
≤ 1

1 ≤D(5, 8)

D(5, 9)
≤ 3

1 ≤ D(5, 8)

D(5, 10)
≤ 3

1 ≤ D(5, 9)

D(5, 10)
≤ 7− 4

√
2

where C4 ≈ 1.053322135 is the positive root of

6137x5 + 5335x4 + 678x3 − 3702x2 − 9479x− 1225

and C5 ≈ 1.194505073 is the positive root of

x4 + 2x3 + 22x2 − 30x− 1.
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Theorem 6. The following bounds involving distances from X6 hold for all tri-
angles.

D(6, 1)

D(6, 2)
≤ 9− 6

√
2

D(6, 1)

D(6, 3)
≤ 2−

√
3

1

2
≤D(6, 1)

D(6, 7)

D(6, 1)

D(6, 8)
≤ 2
√

2− 1

7

D(6, 1)

D(6, 9)
≤ 1

3

D(6, 1)

D(6, 10)
≤
√

2− 1

D(6, 2)

D(6, 3)
≤ 2

3

1 ≤D(6, 2)

D(6, 7)

1

3
≤D(6, 2)

D(6, 8)
≤ 5 + 4

√
2

21

1

2
≤D(6, 2)

D(6, 9)
≤ 3

4

2

3
≤ D(6, 2)

D(6, 10)
≤ 1 +

√
2

3

1

2
≤D(6, 3)

D(6, 4)

2 ≤D(6, 3)

D(6, 5)

C6 ≤
D(6, 3)

D(6, 7)

1

2
≤D(6, 3)

D(6, 8)

1 ≤D(6, 3)

D(6, 9)

1 ≤ D(6, 3)

D(6, 10)

D(6, 7)

D(6, 8)
≤ 1

2

D(6, 7)

D(6, 9)
≤ 1

2

D(6, 7)

D(6, 10)
≤ 4

5

1 ≤D(6, 8)

D(6, 9)
≤ 2

3−
√

2 ≤ D(6, 8)

D(6, 10)
≤ 2

1 ≤ D(6, 9)

D(6, 10)
≤ 8

5

where C6 ≈ 7.8631112181 is the largest root of

6967296x20+2015974656x18−160813808784x16+603818269839x14−894980577861x12

+677249814873x10−274035844587x8+60418557684x6−6782842860x4+290960784x2

+7744.
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Theorem 7. The following bounds involving distances from X7 hold for all tri-
angles.

D(7, 1)

D(7, 2)
≤ 3

4

D(7, 1)

D(7, 3)
≤ 2

17

(
5− 2

√
2
)

D(7, 1)

D(7, 4)
≤ 1

D(7, 1)

D(7, 8)
≤ 1

2

D(7, 1)

D(7, 9)
≤ 1

2

D(7, 1)

D(7, 10)
≤ 2

3

D(7, 2)

D(7, 3)
≤ 2

3

2 ≤D(7, 2)

D(7, 6)

1

3
≤D(7, 2)

D(7, 8)
≤ 2

3

D(7, 2)

D(7, 9)
=

2

3

2

3
≤ D(7, 2)

D(7, 10)
≤ 8

9

1

2
≤D(7, 3)

D(7, 4)

2 ≤D(7, 3)

D(7, 5)

C7 ≤
D(7, 3)

D(7, 6)

1

2
≤D(7, 3)

D(7, 8)

1 ≤D(7, 3)

D(7, 9)

1 ≤ D(7, 3)

D(7, 10)

1 ≤D(7, 4)

D(7, 6)

D(7, 6)

D(7, 8)
≤ 1

3

D(7, 6)

D(7, 9)
≤ 1

3

D(7, 6)

D(7, 10)
≤ 4

9

1 ≤D(7, 8)

D(7, 9)
≤ 2

4

3
≤ D(7, 8)

D(7, 10)
≤ 2

1 ≤ D(7, 9)

D(7, 10)
≤ 4

3

where C7 ≈ 7.9776615835 is the largest root of
833089536x28 + 220028016384x26 − 19474287964848x24 + 139707882692901x22

− 410390834384412x20 + 732430210466916x18 − 892396597211316x16

+ 782711166381062x14 − 492062343977916x12 + 216425700787620x10

−65960002546284x8+14226627485565x6−2259294716376x4+253570773456x2

− 14637417984.
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Theorem 8. The following bounds involving distances from X8 hold for all tri-
angles.

D(8, 1)

D(8, 2)
=

3

2

D(8, 1)

D(8, 4)
≤ 1

D(8, 1)

D(8, 5)
≤ 4

3

2

7

(
4−
√

2
)
≤D(8, 1)

D(8, 6)
≤ 1

1

2
≤D(8, 1)

D(8, 7)
≤ 1

2 ≤D(8, 1)

D(8, 9)

D(8, 1)

D(8, 10)
= 2

D(8, 2)

D(8, 4)
≤ 2

3

D(8, 2)

D(8, 5)
≤ 8

9

4

21

(
4−
√

2
)
≤D(8, 2)

D(8, 6)
≤ 2

3

1

3
≤D(8, 2)

D(8, 7)
≤ 2

3

4

3
≤D(8, 2)

D(8, 9)

D(8, 2)

D(8, 10)
=

4

3

D(8, 3)

D(8, 4)
≤ 1

2

D(8, 3)

D(8, 5)
≤ 2

4

3
≤D(8, 4)

D(8, 5)
≤ 4

1 ≤D(8, 4)

D(8, 6)

1 ≤D(8, 4)

D(8, 7)

2 ≤D(8, 4)

D(8, 9)

2 ≤ D(8, 4)

D(8, 10)

C8 ≤
D(8, 5)

D(8, 6)

1

8

(
3 + 2

√
2
)
≤D(8, 5)

D(8, 7)

3

2
≤D(8, 5)

D(8, 9)

3

2
≤ D(8, 5)

D(8, 10)

2

3
≤D(8, 6)

D(8, 7)
≤ 7

6

2 ≤D(8, 6)

D(8, 9)

2 ≤ D(8, 6)

D(8, 10)
≤ 2 +

1√
2

2 ≤D(8, 7)

D(8, 9)

2 ≤ D(8, 7)

D(8, 10)
≤ 4

D(8, 9)

D(8, 10)
≤ 1

where C8 ≈ 0.6817039304 is the smallest positive root of

896x4 − 2184x3 + 1924x2 − 758x + 121.
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Theorem 9. The following bounds involving distances from X9 hold for all tri-
angles.

3

2
≤D(9, 1)

D(9, 2)
≤ 3

D(9, 1)

D(9, 4)
≤ 1

D(9, 1)

D(9, 5)
≤ 2

2

3
≤D(9, 1)

D(9, 6)
≤ 1

1

2
≤D(9, 1)

D(9, 7)
≤ 1

1 ≤D(9, 1)

D(9, 8)

2 ≤ D(9, 1)

D(9, 10)

D(9, 2)

D(9, 4)
≤ 1

3

D(9, 2)

D(9, 5)
≤ 2

3

1

4
≤D(9, 2)

D(9, 6)
≤ 1

2

D(9, 2)

D(9, 7)
=

1

3

1

3
≤D(9, 2)

D(9, 8)

4

3
≤ D(9, 2)

D(9, 10)

D(9, 3)

D(9, 4)
≤ 1

2

D(9, 3)

D(9, 5)
≤ 2

1 ≤ D(9, 3)

D(9, 10)

2 ≤D(9, 4)

D(9, 5)
≤ 4

1 ≤D(9, 4)

D(9, 6)

1 ≤D(9, 4)

D(9, 7)

1 ≤D(9, 4)

D(9, 8)

10 ≤ D(9, 4)

D(9, 10)

C9 ≤
D(9, 5)

D(9, 6)

1

2
≤D(9, 5)

D(9, 7)

1

2
≤D(9, 5)

D(9, 8)

5

2
+
√

2 ≤ D(9, 5)

D(9, 10)

2

3
≤D(9, 6)

D(9, 7)
≤ 4

3

1 ≤D(9, 6)

D(9, 8)

8

3
≤ D(9, 6)

D(9, 10)

1 ≤D(9, 7)

D(9, 8)

4 ≤ D(9, 7)

D(9, 10)

where C9 ≈ 0.4870156430 is the smallest positive root of

3072x5 + 9304x4 − 35096x3 + 40708x2 − 25350x + 6137.
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Theorem 10. The following bounds involving distances from X10 hold for all
triangles.

D(10, 1)

D(10, 2)
= 3

D(10, 1)

D(10, 4)
≤ 1

D(10, 1)

D(10, 5)
≤ 2

2−
√

2 ≤D(10, 1)

D(10, 6)
≤ 1

1

3
≤D(10, 1)

D(10, 7)
≤ 1

D(10, 1)

D(10, 8)
= 1

1 ≤D(10, 1)

D(10, 9)

D(10, 2)

D(10, 4)
≤ 1

3

D(10, 2)

D(10, 5)
≤ 2

3

1

3

(
2−
√

2
)
≤D(10, 2)

D(10, 6)
≤ 1

3

1

9
≤D(10, 2)

D(10, 7)
≤ 1

3

D(10, 2)

D(10, 8)
=

1

3

1

3
≤D(10, 2)

D(10, 9)

D(10, 3)

D(10, 4)
≤ 1

2

D(10, 3)

D(10, 5)
≤ 2

2 ≤D(10, 3)

D(10, 9)

2 ≤D(10, 4)

D(10, 5)
≤ 4

1 ≤D(10, 4)

D(10, 6)

1 ≤D(10, 4)

D(10, 7)

1 ≤D(10, 4)

D(10, 8)

9 ≤D(10, 4)

D(10, 9)

C10 ≤
D(10, 5)

D(10, 6)

1

2
≤D(10, 5)

D(10, 7)

1

2
≤D(10, 5)

D(10, 8)

3

2
+
√

2 ≤D(10, 5)

D(10, 9)

5

9
≤D(10, 6)

D(10, 7)
≤ 4

3

1 ≤D(10, 6)

D(10, 8)
≤ 1 +

1√
2

5

3
≤D(10, 6)

D(10, 9)

1 ≤D(10, 7)

D(10, 8)
≤ 3

3 ≤D(10, 7)

D(10, 9)

1 ≤D(10, 8)

D(10, 9)

where C10 ≈ 0.4870156430 is the smallest positive root of

50x4 − 72x3 + 22x2 − 2x + 1.
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