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1. Introduction

The diagonals of a quadrilateral (called the reference quadrilateral) form four
associated triangles, called half triangles, shown in Figure 1. Each half triangle
is bounded by two sides of the quadrilateral and one diagonal. The reference
quadrilateral is always named ABCD. The four triangles (numbered 1 to 4) are
shown in Figure 1.

Figure 1. Half Triangles

The triangles have been numbered so that triangle 1 is opposite vertex A, triangle
2 is opposite vertex B, etc. The four triangles are 4BCD, 4ACD, 4ABD, and
4ABC.

Triangle centers are selected in each triangle (for example, incenters, centroids, or
orthocenters). The same type of triangle center is used with each half triangle.
In order, the names of these points are E, F , G, and H, as shown in Figure 2.
These four centers form a quadrilateral EFGH that will be called the central
quadrilateral. Quadrilateral EFGH need not be convex.

Figure 2. Central Quadrilateral

The purpose of this paper is to determine interesting relationships between a ref-
erence quadrilateral and its central quadrilateral. This paper extends our previous
results found in [5].
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2. Types of Quadrilaterals Studied

We are only interested in convex reference quadrilaterals that have a certain
amount of symmetry. For example, we excluded bilateral quadrilaterals (those
with two equal sides), bisect-diagonal quadrilaterals (where one diagonal bisects
another), right kites, right trapezoids, and golden rectangles. The types of quadri-
laterals we studied are shown in Table 1. The sides of the quadrilateral, in order,
have lengths a, b, c, and d. The diagonals have lengths p and q. The measures of
the angles of the quadrilateral, in order, are A, B, C, and D.

Table 1.

Types of Quadrilaterals Considered
Quadrilateral Type Geometric Definition Algebraic Condition
general convex none
cyclic has a circumcircle A + C = B + D
tangential has an incircle a + c = b + d
extangential has an excircle a + b = c + d
parallelogram opposite sides parallel a = c, b = d
equalProdOpp product of opposite sides equal ac = bd
equalProdAdj product of adjacent sides equal ab = cd
orthodiagonal diagonals are perpendicular a2 + c2 = b2 + d2

equidiagonal diagonals have the same length p = q
Pythagorean equal sum of squares, adjacent sides a2 + b2 = c2 + d2

kite two pair adjacent equal sides a = b, c = d
trapezoid one pair of opposite sides parallel A + B = C + D
rhombus equilateral a = b = c = d
rectangle equiangular A = B = C = D
Hjelmslev two opposite right angles A = C = 90◦

isosceles trapezoid trapezoid with two equal sides A = B, C = D
APquad sides in arithmetic progression d− c = c− b = b− a

The following combinations of entries in the above list were also considered: bicen-
tric quadrilaterals (cyclic and tangential), exbicentric quadrilaterals (cyclic and
extangential), bicentric trapezoids, cyclic orthodiagonal quadrilaterals, equidiag-
onal kites, equidiagonal orthodiagonal quadrilaterals, equidiagonal orthodiago-
nal trapezoids, harmonic quadrilaterals (cyclic and equalProdOpp), orthodiagonal
trapezoids, tangential trapezoids, and squares (equiangular rhombi).

So, in addition to the general convex quadrilateral, a total of 27 other types of
quadrilaterals were considered in this study.

A graph of the types of quadrilaterals considered is shown in Figure 3. An arrow
from A to B means that any quadrilateral of type B is also of type A. For example:
all squares are rectangles and all kites are orthodiagonal. If a directed path leads
from a quadrilateral of type A to a quadrilateral of type B, then we will say that
A is an ancestor of B. For example, an equidiagonal quadrilateral is an ancestor
of a rectangle. In other words, all rectangles are equidiagonal.

Unless otherwise specified, when we give a theorem or table of properties of a
quadrilateral, we will omit an entry for a particular shape quadrilateral if the
property is known to be true for an ancestor of that quadrilateral.
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Figure 3. Quadrilateral Shapes

3. Centers

In this study, we will place triangle centers in the four half triangles. We use Clark
Kimberling’s definition of a triangle center [1].

A center function is a nonzero function f(a, b, c) homogeneous in a, b, and c and
symmetric in b and c. Homogeneous in a, b, and c means that

f(ta, tb, tc) = tnf(a, b, c)

for some nonnegative integer n, all t > 0, and all positive real numbers (a, b, c)
satisfying a < b + c, b < c + a, and c < a + b. Symmetric in b and c means that

f(a, c, b) = f(a, b, c)

for all a, b, and c.

A triangle center is an equivalence class x : y : z of ordered triples (x, y, z) given
by

x = f(a, b, c), y = f(b, c, a), z = f(c, a, b).

Tens of thousands of interesting triangle centers have been cataloged in the En-
cyclopedia of Triangle Centers [2]. We use Xn to denote the n-th named center
in this encyclopedia.

Note that if the center function of a certain center is f(a, b, c), then the trilinear
coordinates of that point with respect to a triangle with sides a, b, and c are(

f(a, b, c) : f(b, c, a) : f(c, a, b)
)
.

The barycentric coordinates for that point would then be(
af(a, b, c) : bf(b, c, a) : cf(c, a, b)

)
.
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4. Methodology

We used a computer program called GeometricExplorer to compare quadrilaterals
with their central quadrilateral. Starting with each type of quadrilateral listed in
Figure 3 for the reference quadrilateral, we placed triangle centers in each of the
four half triangles.

For each n from 1 to 1000, we determined center Xn of each of the half triangles of
the reference quadrilateral. The program then analyzes the central quadrilateral
formed by these four centers and reports if the central quadrilateral is related
to the reference quadrilateral. Points at infinity were omitted. The types of
relationships checked for are shown in Table 4.

Relationships Checked For
notation description

[ABCD] = [EFGH] the quadrilaterals have the same area (This relation-
ship is excluded if the quadrilaterals are congruent.)

[ABCD] = k[EFGH] the area of ABCD is k times the area of EFGH †
ABCD ∼= EFGH the quadrilaterals are congruent

ABCD ∼ EFGH the quadrilaterals are similar (This relationship is ex-

cluded if the quadrilaterals are homothetic.)

∂ABCD = ∂EFGH the quadrilaterals have the same perimeter (This
relationship is excluded if the quadrilaterals are congruent.)

�ABCD ∼= �EFGH the quadrilaterals have congruent circumcircles
(This relationship is excluded if the quadrilaterals are congruent.)

�ABCD ≡ �EFGH the quadrilaterals have the same circumcircle

o(ABCD) = o(EFGH) the quadrilaterals have the same circumcenter (This
relationship is excluded if the quadrilaterals have the same circum-

circle.)

i(ABCD) = i(EFGH) the quadrilaterals have the same incenter

dp(ABCD) = dp(EFGH) the quadrilaterals have the same diagonal point

persp(ABCD,EFGH) the quadrilaterals are perspective (This relationship is
excluded if the quadrilaterals are homothetic.)

homot(ABCD,EFGH) the quadrilaterals are homothetic

conic(ABCD,EFGH) the quadrilaterals have a common noncircular cir-
cumconic

hyperb(ABCD,EFGH) the quadrilaterals have a common circumconic
which is a rectangular hyperbola. (By definition, the
center of this hyperbola is the Poncelet point (QA-P2) of both ABCD

and EFGH.)

ctr1[ABCD] = ctr2[EFGH] the quadrilaterals have coincident centers

† Only rational values of k were checked for with denominators less than 10.
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The types of quadrilateral centers considered are shown in Table 2. For example,
the relationship ponce[ABCD] = stein[EFGH] means that the Poncelet point of
quadrilateral ABCD coincides with the Steiner point of quadrilateral EFGH.

Table 2.

Quadrilateral Centers Considered
name description symbol
vertex centroid (QA-P1) m
Poncelet point (QA–P2), also known as the Euler-Poncelet point ponce
Steiner point (QA–P3), also known as the Gergonne-Steiner point stein
diagonal point intersection of the diagonals (QG–P1) dp

The following centers are only defined for cyclic quadrilaterals.

anticenter intersection of the maltitudes (QA–P2) anti
circumcenter center of circumscribed circle (QA-P3) o
centrocenter center of circle through centroids of half triangles (QA-P7) centro
orthocenter center of circle through orthocenters of half triangles h

The following centers are only defined for tangential quadrilaterals.

incenter center of inscribed circle i

Some quadrilateral centers only exist for certain shape quadrilaterals. For ex-
ample, the circumcenter, anticenter, orthocenter, and centrocenter only apply to
cyclic quadrilaterals. The incenter only applies to tangential quadrilaterals. A
code in parentheses represents the name for the point as listed in the Encyclope-
dia of Quadri-Figures [7].

When reporting perspectivities or homotheties, we will specify what type of point
the perspector is. Only quadrangle points listed in [7] are detected. As of January
2025, only 44 points were listed.

For example, the property QA-Pi=persp(ABCD,EFGH)=QA-Pj means that the
perspector is the QA-Pi point of quadrilateral ABCD and is the QA-Pj point of
quadrilateral EFGH.

A similar notation is used when describing properties involving conics. We check
to see if the center of the conic is one of the known quadrangle points. For
example, the property QA-Pi=conic(ABCD,EFGH) means that the center of
the common circumconic is the QA-Pi point of quadrilateral ABCD.
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The most common quadrangle points are described in the following table. See
[7] for the definition of terms and more details. Note that a quadrangle is an
unordered set of four points in the plane (no three of which are collinear).

Table 3.

Common Quadrangle Centers
symbol common name description
QA-P1 Quadrangle Centroid center of gravity of equal masses placed

at the vertices
QA-P2 Euler-Poncelet Point common point of the nine-point circles

of the half triangles
QA-P3 Gergonne-Steiner Point Common point of the four midray circles
QA-P4 Isogonal Center homothetic center of ABCD with the

2nd generation isogonal conjugate quad-
rangle

QA-P5 Isotomic Center perspector of ABCD with the isotomic
conjugate quadrangle

QA-P6 Parabola Axes Crosspoint intersection point of the axes of the
two parabolas that can be constructed
through A, B, C, and D

QA-P7 9-pt Homothetic Center homothetic center of ABCD with the
quadrangle composed of four 2nd gen-
eration nine-point venters

QA-P9 QA Miquel Center common point of the three Miquel circles
of the half triangles

QA-P12 Orthocenter of the Diagonal
Triangle

orthocenter of the triangle formed by the
three diagonal points of ABCD

QA-P34 Euler-Poncelet Point of the
Centroid Quadrangle

Euler-Poncelet point of the quadrangle
formed by centroids of the half triangles
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5. Barycentric Coordinates and Quadrilaterals

The program we used to find results about central quadrilaterals (GeometricEx-
plorer) is a useful tool for discovering results, but it does not prove that these
results are true. GeometricExplorer uses numerical coordinates (to 15 digits of
precision) for locating all the points. Thus, a relationship found by this program
does not constitute a proof that the result is correct, but gives us compelling
evidence for the validity of the result.

If a theorem in this paper is accompanied by a figure, this means that the figure
was drawn using either Geometer’s Sketchpad or GeoGebra. In either case, we
used the drawing program to dynamically vary the points in the figure. Noticing
that the result remains true as the points vary offers further evidence that the
theorem is true. But again, this does not constitute a proof.

To prove the results that we have discovered, we use geometric methods, when
possible. If we could not find a purely geometrical proof, we turned to analytic
methods using barycentric coordinates and performing exact symbolic computa-
tion using Mathematica and the package baricentricas.m3.

These analytic proofs are given in Mathematica Notebooks included with the
supplementary material accompanying the on-line publication of this paper.

If our only “proof” of a particular relationship is by using numerical calculations
(and not using exact computation), then we have colored the center red in the
table of relationships.

When proving results analytically, we used barycentric coordinates. We assume
the reader is familiar with this coordinate system. Given a quadrilateral ABCD,
we set up a barycentric coordinate system using 4ABC as the reference triangle.
We assign coordinates (p : q : r) to point D as shown in Figure 4. Note that
AB = c, BC = a, and AC = b.

Figure 4. barycentric coordinate system for quadrilateral ABCD

The barycentric coordinates for the various triangle centers were found from [2].
To find the coordinates of a center (u : v : w) with respect to a triangle XY Z, we
use the function CentroETCTriangulo in the baricentricas.m package via the
call CentroETCTriangulo[{u,v,w},{ptX,ptY,ptZ}] where ptX, ptY, and ptZ,
are the barycentric coordinates for the vertices of 4XY Z.

3The package baricentricas.m written by F. J. G Capitán can be freely downloaded from
http://garciacapitan.epizy.com/baricentricas/

http://garciacapitan.epizy.com/baricentricas/


Stanley Rabinowitz and Ercole Suppa 99

When analyzing an initial quadrilateral with a special shape, we restrict the values
of p, q, and r by specifying a condition that a, b, c, p, q, and r must satisfy using
the conditions shown in the following table.

Geometrical condition Analytic condition

A,B,C,D concyclic a2qr + b2pr + c2pq = 0

AB + CD = BC + AD 2pr (a2 − 2ac + b2 + c2) + p2(a− b− c)(a + b− c) +
r2(a−b−c)(a+b−c)−4cpq(a−c)+4aqr(a−c) = 0

AB + BC = AD + DC p2
(
a2 + 2ac− b2 + c2

)
+ pr

(
2a2 + 4ac+ 2b2 + 2c2

)
+

r2
(
a2 + 2ac− b2 + c2

)
+ qr

(
4a2 + 4ac

)
+ pq

(
4ac+ 4c2

)
= 0

BC + CD = AB + AD p2
(
a2 − 2ac− b2 + c2

)
+ pr

(
2a2 − 4ac+ 2b2 + 2c2

)
+

r2
(
a2 − 2ac− b2 + c2

)
+ qr

(
4a2 − 4ac

)
+ pq

(
4c2 − 4ac

)
= 0

AB = BC a = c

AD ‖ BC q + r = 0

AB ‖ CD p + q = 0

AB · CD = AC ·DA p(b2 − c2)(qc2 + rb2) + a2
(
c2q(p+ q)− b2r(p+ r)

)
= 0

AB · AC = BC · CD a4q(p + q) + a2p (b2(p + q)− qc2) = b2c2(p + q + r)2

AC ⊥ BD b2(p− r) = (a2 − c2)(p + r)

AB ⊥ BC b2 = a2 + c2

AC = BD b2 (p2 + (q + r)2 + p(2q + 3r)) = (p + r)(c2p + a2r)

AB2 + AC2 = BC2 + CD2 a2
(
p2 + p(q + 2r) + r(2q + r)

)
= b2

(
2p2 + p(3q + 2r) + (q + r)2

)
+

c2
(
p2 + p(q + 2r) + (q + r)2

)
kite p + 2q + r = 0 ∧ b2 + q = 0 ∧ c2 = a2 + q + r

parallelogram q + r = 0 ∧ p + q = 0

rhombus q + r = 0 ∧ p + q = 0 ∧ a = c

rectangle q + r = 0 ∧ p + q = 0 ∧ b2 = a2 + c2

isosceles trapezoid b2p + (a2 − c2) q = 0

harmonic quadrilateral ra2 = pc2 ∧ pb2 + 2qa2 = 0

orthodiagonal quadrilateral a2(p + r) + b2(r − p)− c2(p + r) = 0

If a quadrilateral shape is formed by a combination of conditions, then the con-
dition used to obtain that shape is the conjunction of the primitive conditions.

For example, a parallelogram has AD ‖ BC and AB ‖ CD, so the condition on
p, q, and r that makes ABCD a parallelogram is (q + r = 0) ∧ (p + q = 0). A
rhombus is a parallelogram with the added condition AB = BC, so we add in the
analytical condition a = c.

When checking to see if a point is a notable center of quadrilateral ABCD, we use
the CT coordinates found from [7]. The coordinates were scaled to get rid of any
fractions. Otherwise, applying these coordinates to certain shape quadrilaterals
would produce divide-by-zero errors.
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5.1. Example.

We now give an example of how barycentric coordinates can be used to prove
the results in this paper. We show how to prove the following theorem using
barycentric coordinates.

Theorem 5.1. Let ABCD be an orthodiagonal quadrilateral. Let E, F , G, and H
be the X5 -points of4BCD, 4CDA, 4DAB, and4ABC, respectively. Then the
centroid of quadrilateral ABCD coincides with the diagonal point of quadrilateral
EFGH (Figure 5).

Figure 5. orthodiagonal quad with X5-points =⇒ m[ABCD] = dp[EFGH]

Note that W , X, Y , and Z are the midpoints of the sides of quadrilateral ABCD,
making O the centroid. We need to show that O coincides with the intersection
of diagonals EG and FH of quadrilateral EFGH.

Proof. We begin by specifying the coordinates for the vertices of quadrilateral
ABCD.

ptA = {1:0:0};

ptB = {0:1:0};

ptC = {0:0:1};

ptD = {p:q:r};

Then we use the function CentroETCTriangulo from the baricentricas package
to create a routine that determines the center Xn of the four half triangles of
quadrilateral ABCD.

CentralQuadrilateral[n_] :=

{

Simplificar[CentroETCTriangulo[ETC[[n, 2]], {ptB, ptC, ptD}]],

Simplificar[CentroETCTriangulo[ETC[[n, 2]], {ptA, ptC, ptD}]],

Simplificar[CentroETCTriangulo[ETC[[n, 2]], {ptA, ptB, ptD}]],

Simplificar[CentroETCTriangulo[ETC[[n, 2]], {ptA, ptB, ptC}]]

};

Then we use this routine to find the coordinates of E, F , G, and H.

{ptE, ptF, ptG, ptH} = CentralQuadrilateral[5];
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The result from Mathematica shows that ptE = {x, y, z} where

x =
(
(b2 − c2)2 − a2(b2 + c2)

)
p2 − 2a4qr − a2

(
a2 + b2 − c2

)
pr − a2

(
a2 − b2 + c2

)
pq,

y =
(
(a2 − c2)2 − b2(c2 + a2)

)
p2 +

(
2a4 + b4 + c4 − 2b2c2 − 3a2c2 − 3a2b2

)
pq

+
(
a4 + b4 + c4 − 2b2c2 − 2a2c2

)
pr + a2

(
a2 + b2 − c2

)
qr,

z =
(
(a2 − b2)2 − c2(a2 + b2)

)
p2 +

(
a4 + b4 + c4 − 2b2c2 − 2a2b2

)
pq

+
(
2a4 + b4 + c4 − 2b2c2 − 3a2c2 − 3a2b2

)
pr + a2qr

(
a2 − b2 + c2

)
with similarly complicated expressions for ptF, ptG, and ptH.

Next, we find the centroid of quadrilateral ABCD.

centroid = CentroidQuad[{ptA, ptB, ptC, ptD}];

using the routine

CentroidQuad[{P_, Q_, R_, S_}] := Punto[

Recta[Medio[P, Q], Medio[R, S]],

Recta[Medio[P, S], Medio[Q, R]]

];

giving the result

centroid = {2p + q + r, p + 2q + r, p + q + 2r}.
Then we find the diagonal point of quadrilateral EFGH,

dp = DiagonalPt[{ptE, ptF, ptG, ptH}];

using the routine

DiagonalPt[{P_, Q_, R_, S_}] := Punto[Recta[P, R], Recta[Q, S]];

giving a complicated expression for dp.

Now we write down the condition that these two points coincide recalling the fact
that two barycentric coordinates represent the same point if they are proportional.

sameCondition = Cross[centroid, dp] == {0, 0, 0};

The resulting expression is quite complicated since the two points do not coincide
in an arbitrary quadrilateral.

The next step is to find the condition that ensures that ABCD is orthodiagonal.

orthodiag = SonPerpendiculares[Recta[ptA, ptC], Recta[ptB, ptD]];

The condition found is

a2(p + r) + b2(r − p)− c2(p + r) = 0.

Finally, we simplify sameCondition subject to this constraint.

Simplify[sameCondition, orthodiag]

Mathematica responds with

True

indicating that the points coincide. �
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6. General Quadrilaterals

Our computer study found the following relationships between a general quadri-
lateral and its central quadrilateral.

Central Quadrilaterals of General Quadrilaterals
Relationship centers

[ABCD] = 9[EFGH] 2

[ABCD] = [EFGH] 4

QA-P2=hyperb(ABCD,EFGH)=QA-P2 4

m[ABCD] = m[EFGH] 2

m[ABCD] = ponce[EFGH] 5

ponce[ABCD] = ponce[EFGH] 4

ponce[EFGH] = stein[ABCD] 3

QA-P1=homot[ABCD,EFGH]=QA-P1 2

6.1. Properties involving X2.

The following result comes from [4].

Theorem 6.1. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H
be the X2-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
quadrilaterals ABCD and EFGH are similar. The ratio of similitude is 3 (Fig-
ure 6).

Figure 6. general quadrilateral with X2-points =⇒ ABCD ∼ EFGH

Theorem 6.2. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H
be the X2-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
[ABCD] = 9[EFGH] (Figure 6).

Proof. This follows immediately from Theorem 6.1 since the ratio of the areas of
two similar figures is equal to the square of the ratio of their sides. �
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Theorem 6.3. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H
be the X2-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
quadrilaterals ABCD and EFGH are homothetic. The homothetic center is the
centroid of quadrilateral ABCD (Figure 7).

Figure 7. general quadrilateral with X2-points =⇒ homot(ABCD,EFGH)

Proof. From [8] we know that the lines from the vertices of a triangle to the
centroid of the opposite half triangle meet in a point known as the centroid of
the quadrilateral. Thus, the quadrilaterals are perspective. Since they are also
similar, this means they are homothetic. �

Theorem 6.4. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H
be the X2-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
quadrilaterals ABCD and EFGH have the same centroid (Figure 7).

Proof. This follows from Theorem 6.3 since a homothety maps the centroid of a
figure into the centroid of the new figure and the center of the homothety is the
centroid of quadrilateral ABCD. �

6.2. Properties involving X3.

Theorem 6.5. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H be
the X3-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then

ponce[EFGH] = stein[ABCD].

Our proof of Theorem 6.5 is analytical using barycentric coordinates.

Open Question 1. Is there a purely geometrical proof of Theorem 6.5?

6.3. Properties involving X4.

The following result comes from [4].

Theorem 6.6. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H
be the X4-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
quadrilaterals ABCD and EFGH have the same area (Figure 8).
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Figure 8. general quadrilateral with X4-points =⇒ [ABCD] = [EFGH]

The following result comes from [9].

Theorem 6.7. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H
be the X4-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
quadrilaterals ABCD and EFGH have a common circumconic (Figure 9). The
conic is a rectangular hyperbola and the center of the conic, O, is the Euler-
Poncelet Point (QA-P2) of both quadrilaterals ABCD and EFGH.

Figure 9. general quadrilateral with X4-points =⇒ hyperb(ABCD,EFGH)

Corollary 6.8. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H
be the X4-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then

ponce[ABCD] = ponce[EFGH].

6.4. Properties involving X5.

Theorem 6.9. Let ABCD be an arbitrary quadrilateral. Let E, F , G, and H be
the X5-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then

m[EFGH] = ponce[ABCD].

Our proof of Theorem 6.9 is analytical using barycentric coordinates.

Open Question 2. Is there a purely geometrical proof of Theorem 6.9?
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7. Tangential Quadrilaterals

A tangential quadrilateral in one in which a circle can be inscribed, touching all
four sides. The center of this circle is called the incenter of the quadrilateral. The
circle is called the incircle.

Our computer study found only one relationship between a tangential quadrilat-
eral and its central quadrilateral (using any of the first 1000 centers) that was not
true for quadrilaterals in general. It is listed in the following table.

Central Quadrilaterals of Tangential Quadrilaterals
Relationship centers

i[ABCD] = persp[ABCD,GHEF ] 1

Theorem 7.1. Let ABCD be a tangential quadrilateral with incenter I. Let E,
F , G, and H be the X1-points of 4BCD, 4CDA, 4DAB, and 4ABC, respec-
tively. Then quadrilaterals ABCD and GHEF are perspective with perspector I
(Figure 10).

Figure 10. tangential quadrilateral with X1-points =⇒ persp[ABCD,GHEF ]

Proof. The point G is the incenter of 4ABD, hence G lies on the angle bisector
of ∠BAD. Thus, G ∈ AI. Similarly, H ∈ BI, E ∈ CI, and F ∈ DI. Therefore,
AG, BH, CE, and DF concur in I. Hence, quadrilaterals ABCD and GHEF
are perspective and the perspector is I. �

Open Question 3. For the quadrilaterals in Theorem 7.1, how is the perspector
related to quadrilateral EFGH?

8. Extangential Quadrilaterals

An extangential quadrilateral with consecutive sides of lengths a, b, c, and d is
one in which a + b = c + d.

Our computer study did not find any relationships between an extangential quadri-
lateral and its central quadrilateral (using any of the first 1000 centers) that was
not true for quadrilaterals in general.

Central Quadrilaterals of exTangential Quadrilaterals
No new relationships were found.
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9. EqualProdOp Quadrilaterals

An equalProdOp quadrilateral with consecutive sides of lengths a, b, c, and d is
one in which ac = bd.

Our computer study did not find any relationships between an equalProdOp
quadrilateral and its central quadrilateral (using any of the first 1000 centers)
that were not true for quadrilaterals in general.

Central Quadrilaterals of EqualProdOp Quadrilaterals
No new relationships were found.

10. EqualProdAdj Quadrilaterals

An equalProdAdj quadrilateral with consecutive sides of lengths a, b, c, and d is
one in which ab = cd.

Our computer study did not find any relationships between an equalProdAdj
quadrilateral and its central quadrilateral (using any of the first 1000 centers)
that were not true for quadrilaterals in general.

Central Quadrilaterals of EqualProdAdj Quadrilaterals
No new relationships were found.

11. Pythagorean Quadrilaterals

A Pythagorean quadrilateral with consecutive sides of lengths a, b, c, and d is one
in which a2 + b2 = c2 + d2.

Our computer study did not find any relationships between a Pythagorean quadri-
lateral and its central quadrilateral (using any of the first 1000 centers) that were
not true for quadrilaterals in general.

Central Quadrilaterals of Pythagorean Quadrilaterals
No new relationships were found.

12. Equidiagonal Quadrilaterals

An equidiagonal quadrilateral is a quadrilateral with two equal diagonals.

Our computer study did not find any relationships between an equidiagonal quadri-
lateral and its central quadrilateral (using any of the first 1000 centers) that were
not true for quadrilaterals in general.

Central Quadrilaterals of Equidiagonal Quadrilaterals
No new relationships were found.
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13. Orthodiagonal Quadrilaterals

An orthodiagonal quadrilateral is a quadrilateral in which the two diagonals are
perpendicular.

Our computer study found a few relationships between an orthodiagonal quadri-
lateral and its central quadrilateral (using any of the first 1000 centers) that are
not true for quadrilaterals in general. These are shown in the following table.

Central Quadrilaterals of Orthodiagonal Quadrilaterals
Relationship centers

stein[ABCD] = dp(EFGH) 3

QA-P4=persp[ABCD,GHEF ]=QA-P4 3

dp(ABCD) = dp(EFGH) = ponce[ABCD] 4

m[ABCD] = dp(EFGH) 5

persp[ABCD,GHEF ] 25, 68, 485, 486

Theorem 13.1. Let ABCD be an orthodiagonal quadrilateral. Let E, F , G,
and H be the X4 -points of 4BCD, 4CDA, 4DAB, and 4ABC, respec-
tively. Then quadrilaterals ABCD and EFGH have the same diagonal point
and dp(ABCD) = ponce[ABCD] (Figure 11).

Figure 11. orthodiagonal quad with X4-points =⇒ dp(ABCD) = dp(EFGH)

Proof. Let P be the diagonal point of quadrilateral ABCD. Since ABCD is or-
thodiagonal, AP is an altitude of 4ABD. Since E is the orthocenter of 4BCD,
E lies on this altitude. Similarly, G also lies on this altitude. In the same
way, points F and H lie on BD. Thus, the diagonals EG and FH of central
quadrilateral EFGH meet at P and so EFGH has diagonal point P . Hence,
dp(ABCD) = dp(EFGH).

The point P is the foot of the C-altitude of4BCD, so C lies on the ninepoint cir-
cle of 4BCD. Similarly P lies on the ninepoint circles of the other half triangles.
Therefore, P = ponce[ABCD] and dp(ABCD) = ponce[ABCD]. �

Open Question 4. Are there purely geometrical proofs for the results found in
this section involving centers X3, X4, and X5?
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14. Cyclic Quadrilaterals

An cyclic quadrilateral is a quadrilateral that can be inscribed in a circle.

Our computer study found many relationships between a cyclic quadrilateral and
its central quadrilateral. They are summarized in the following tables. Properties
that are true for quadrilaterals in general are excluded.

Centers that are colored blue in the following table represent centers for which
the central quadrilateral is cyclic.

Central Quadrilaterals of Cyclic Quadrilaterals
Relationship centers

[ABCD] = 4[EFGH] 5, 550

[ABCD] = 9[EFGH] 376

[ABCD] = 16[EFGH] 140, 548

[ABCD] = 25[EFGH] 631

[ABCD] = 36[EFGH] 549

[ABCD]/[EFGH] = 1/4 382

[ABCD]/[EFGH] = 9/4 381

[ABCD]/[EFGH] = 16/9 546

[ABCD]/[EFGH] = 100/9 632

[ABCD]/[EFGH] = 144/25 547

conic(ABCD,EFGH) 6, 54, 64

ABCD ∼= EFGH 4, 20

anti[ABCD] = anti[EFGH] 4

anti[ABCD] = centro[EFGH] 546

anti[ABCD] = m[EFGH] 381

anti[ABCD] = o[EFGH] 5

anti[EFGH] = centro[ABCD] 381

anti[EFGH] = h[ABCD] 382

anti[EFGH] = m[ABCD] 5

centro[ABCD] = centro[EFGH] 5

centro[ABCD] = o[EFGH] 2

h[ABCD] = o[EFGH] 4

m[ABCD] = o[EFGH] 140
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Central Quadrilaterals of Cyclic Quadrilaterals (cont.)
Relationship centers

o[ABCD] = h[EFGH] S

dp(ABCD) = dp(EFGH) 6

dp(ABDC) = dp(EFHG) 6, 15, 16, 61, 62, 371, 372

dp(ACBD) = dp(EGFH) 6, 15, 16, 61, 62, 371, 372

(ABCD) ≡ (EFGH) C

o[ABCD] = o[EFGH] 399

QA-P2=homot[ABCD,EFGH]=QA-P2 4

QA-P7=homot[ABCD,EFGH]=QA-P7 5

QA-P34=homot[ABCD,EFGH]=QA-P34 631

homot[ABCD,EFGH] S

The symbol C denotes the set of all triangle centers that lie on the circumcircle
of the reference triangle.

The list of triangle centers that lie on the circumcircle of the reference triangle
can be found in [11]. The first few are Xn for n =74, 98–112, 476, 477, 675, 681,
689, 691, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715, 717, 719, 721, 723, 725,
727, 729, 731, 733, 735, 737, 739, 741, 743, 745, 747, 753, 755, 759, 761, 767, 769,
773, 777, 779, 781, 783, 785, 787, 789, 791, 793, 795, 797, 803, 805, 807, 809, 813,
815, 817, 819, 825, 827, 831, 833, 835, 839–843, 898, 901, 907, 915, 917, 919, 925,
927, 929–935, 953, and 972.

The triangle centers that do not lie on the circumcircle, for which the central
quadrilateral of a cyclic quadrilateral is cyclic are Xn for n =1, 2, 4, 5, 13–16, 20,
23, 36, 40, 80, 125, 140, 165, 186, 265, 376, 381, 382, 399, 546–550, 631, 632. The
only one where the circumcircle of the central quadrilateral is concentric with the
circumcircle of the reference triangle is X399.

The symbol S denotes the set of all triangle centers that lie on the Euler line
of the reference triangle and have constant Shinagawa coefficients. Shinagawa
coefficients are defined in [2]. The first few n for which Xn has constant Shinagawa
coefficients are n =2, 3, 4, 5, 20, 140, 376, 381, 382, 546-550, 631, and 632.

The following are known facts about cyclic quadrilaterals.

Theorem 14.1. The Gergonne-Steiner point (QA-P3) of a cyclic quadrilateral
coincides with the circumcenter of that quadrilateral. That is,

stein[ABCD] = o[ABCD].

Relationships of this form will be excluded from our tables.

Theorem 14.2. The Euler-Poncelet point (QA-P2) of a cyclic quadrilateral co-
incides with the anticenter of that quadrilateral. That is,

ponce[ABCD] = anti[ABCD].

Relationships of this form will be excluded from our tables.



110 More Relationships between Central Quad and Reference Quad

Theorem 14.3. The Quadrangle Nine-point Homothetic Center (QA-P7) of a
cyclic quadrilateral coincides with the centrocenter of that quadrilateral. That is,

QA-P7 [ABCD] = centro[ABCD].

Theorem 14.4. Let ABCD be a cyclic quadrilateral. Let E, F , G, and H be
the X399-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
quadrilaterals ABCD and EFGH have concentric circumcircles and their radii
are in the ratio 1 : 2(Figure 12).

Figure 12. cyclic quad with X399-points =⇒ concentric[1 : 2](ABCD,EFGH)

An analytic proof of Theorem 14.4 is given in the supplementary material accom-
panying the on-line publication of this paper.

Theorem 14.5. Let ABCD be a cyclic quadrilateral. Let X be any triangle center
that lies on the circumcircle of the reference triangle. Let E, F , G, H be the X-
points of4BCD, 4CDA, 4DAB, and4ABC, respectively. Then quadrilaterals
ABCD and EFGH have the same circumcircle, i.e. (ABCD) ≡ (EFGH).

Proof. Let Γ be the circumcircle of quadrilateral ABCD. Since E is the X-point
of 4BCD, E must lie on the circumcircle of 4BCD. Hence E lies on Γ. In the
same way, F , G, and H must also lie on Γ. Therefore. ABCD and EFGH have
the same circumcircle, Γ. �

Open Question 5. Are there purely geometrical proofs for the results found in
this section involving centers X2, X3, X4, X5, and X6?

15. Bicentric Quadrilaterals

A bicentric quadrilateral is a quadrilateral that is both cyclic and tangential.

Our computer study found a few relationships between a bicentric quadrilateral
and its central quadrilateral (using any of the first 1000 centers) that were not
true for cyclic quadrilaterals in general.

Central Quadrilaterals of Bicentric Quadrilaterals
Relationship centers

persp[ABCD,GHEF ] 35, 36, 55, 56, 999
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16. Trapezoids

An trapezoid is a quadrilateral with a pair of parallel sides.

Our computer study found only one relationship between a trapezoid and its
central quadrilateral (using any of the first 1000 centers) that is not true for
quadrilaterals in general. It is shown in the following table.

Central Quadrilaterals of Trapezoids
Relationship centers

ABCD ∼ HGFE 3

17. Tangential Trapezoids

A tangential trapezoid is a trapezoid that is also tangential.

Our computer study did not find any relationships between a tangential trapezoid
and its central quadrilateral (using any of the first 1000 centers) that were not
true for trapezoids or tangential quadrilaterals in general.

Central Quadrilaterals of Tangential Trapezoids
No new relationships were found.

18. Orthodiagonal Trapezoids

An orthodiagonal trapezoid is a trapezoid that is also orthodiagonal.

Our computer study did not find any relationships between an orthodiagonal
trapezoid and its central quadrilateral (using any of the first 1000 centers) that
were not true for trapezoids in general or for orthodiagonal quadrilaterals.

Central Quadrilaterals of Orthodiagonal Trapezoids
No new relationships were found.

19. Hjelmslev Quadrilaterals

A Hjelmslev quadrilateral is a quadrilateral with two right angles at opposite
vertices. Hjelmslev quadrilaterals are necessarily cyclic.

Our computer study did not find any relationships between a Hjelmslev quadri-
lateral and its central quadrilateral (using any of the first 1000 centers) that were
not true for cyclic quadrilaterals in general.

Central Quadrilaterals of Hjelmslev Quadrilaterals
No new relationships were found.
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20. Isosceles Trapezoids

An isosceles trapezoid is a trapezoid with its nonparallel sides having the same
length. Isosceles trapezoids are necessarily cyclic.

Our computer study found a few relationships between an isosceles trapezoid and
its central quadrilateral (using any of the first 1000 centers) that were not true
for cyclic quadrilaterals in general. They are given in the table below.

Central Quadrilaterals of Isosceles Trapezoids
persp[ABCD,HGFE] 19, 25, 48, 49, 63, 69, 186, 264, 265,

304, 305, 317, 340, 847

QA-P9=persp[ABCD,HGFE] 24

21. Harmonic Quadrilaterals

A harmonic quadrilateral is a cyclic quadrilateral that is also an equalProdOpp
quadrilateral.

Our computer study found a few relationships between a harmonic quadrilateral
and its central quadrilateral (using any of the first 1000 centers) that were not
true for cyclic quadrilaterals in general. They are shown in the following table.

Central Quadrilaterals of Harmonic Quadrilaterals
Relationship centers

persp[ABCD,EFGH] 13–18, 61, 62, 371, 372, 395–398, 485, 590, 615

persp[ABCD,GHEF ] 15, 16, 61, 62, 371, 372

When proving these results analytically using barycentric coordinates, we use the
following result.

Theorem 21.1. Let ABCD be a harmonic quadrilateral. The barycentric coordi-
nates of D with respect to 4ABC are (2a2 : −b2 : 2c2), where a = BC, b = CA,
and c = AB.

Proof. It is known [12] that the point D is the second intersection of the B-
symmedian with the circumcircle of 4ABC.
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The coordinates of the symmedian point, K, are (a2 : b2 : c2), so the equation of
the B-symmedian is ∣∣∣∣∣∣

x y z
0 1 0
a2 b2 c2

∣∣∣∣∣∣ = 0 ⇔ c2x− a2z = 0.

The equation of the circumcircle of the reference triangle ABC is well known [12]
to be

a2qr + b2pr + c2pq = 0.

Therefore, the coordinates of the point D are obtained by solving the system{
a2qr + b2pr + c2pq = 0
c2x− a2z = 0

from which it is easily found that the coordinates of D are (2a2 : −b2 : 2c2). �

Open Question 6. Are there purely geometrical proofs for the results found in
this section involving centers X3, X4, X5, and X6?

22. Cyclic Orthodiagonal Quadrilaterals

An cyclic orthodiagonal quadrilateral is a cyclic quadrilateral whose diagonals are
perpendicular.

Our computer study found a few relationships between a cyclic orthodiagonal
quadrilateral and its central quadrilateral (using any of the first 1000 centers) that
were not true for cyclic quadrilaterals in general or for orthodiagonal quadrilaterals
in general. These are shown in the following table.

Central Quads of Cyclic Orthodiagonal Quadrilaterals
[ABCD] = [EHGF ] 68

anti[ABCD] = dp[ABCD] = stein[EFGH] 51–53, 128–130, 137–139, 143

centro[ABCD] = stein[EFGH] 568

anti[ABCD] = dp(ABCD) = dp(EFGH) 6, 24, 25, 68, 186, 378, 847, 933

m[ABCD] = stein[EFGH] 389

m[ABCD] = dp[EFGH] 182, 216, 343

persp[ABCD,GHEF ] 186, 378, 571

QA-P9=persp[ABCD,GHEF ] 24
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23. Kites

A kite is a quadrilateral consisting of two adjacent sides of length a and the other
two sides of length b. A kite is necessarily orthodiagonal.

Our computer study found a few relationships between a kite and its central
quadrilateral (using any of the first 1000 centers) that were not true for orthodi-
agonal quadrilaterals in general.

Central Quadrilaterals of Kites
m[ABCD] = stein[EFGH] 402, 618–620

ponce[ABCD] = stein[EFGH] 13, 14

stein[ABCD] = stein[EFGH] 616, 617

We can assume without loss of generality that D is the reflection of B about AC.
Hence, the barycentric coordinates of D are (a2 + b2 − c2 : −b2 : −a2 + b2 + c2).

When proving these results analytically using barycentric coordinates, we use the
following result.

Theorem 23.1. If ABCD is a kite with AB = AD and CB = CD, then the
Steiner point of its central quadrilateral coincides with the midpoint of EG.

Figure 13. kite =⇒ kite

Proof. From Theorem 6.27 of [4], the central quadrilateral EFGH is a kite with
EF = EH and GF = GH (Figure 13). Then, by Corollary 10.5 of [5], the Steiner
point of EFGH coincides with the midpoint of EG. �

24. AP Quadrilaterals

An AP quadrilateral is a quadrilateral whose sides (in order) form an arithmetic
progression.

Our computer study found no relationships between an AP quadrilateral and its
central quadrilateral (using any of the first 1000 centers) that were not true for
quadrilaterals in general.

Central Quadrilaterals of AP Quadrilaterals
No new relationships were found.
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25. Equidiagonal Orthodiagonal Quadrilaterals

An equidiagonal orthodiagonal quadrilateral is a quadrilateral in which the two
diagonals are both equal and perpendicular.

Our computer study found a few relationships between an equidiagonal ortho-
diagonal quadrilateral and its central quadrilateral (using any of the first 1000
centers) that are not true for orthodiagonal quadrilaterals in general. These are
shown in the following table.

Table 4.

Central Quads of Equidiagonal Orthodiagonal Quadrilaterals
Relationship centers

m[ABCD] = m[EFGH] 489

stein[ABCD] = stein[EFGH] 638

m[ABCD] = stein[EFGH] 640

QA-P1=persp[ABCD,GHEF ] 485

QA-P5=persp[ABCD,GHEF ] 68

QA-P3=persp[ABCD,EFGH] 637

QA-P4=persp[ABCD,EFGH] 489

26. Exbicentric Quadrilaterals

An exbicentric quadrilateral is a cyclic quadrilateral that is also extangential.

Our computer study did not find any relationships between an exbicentric quadri-
lateral and its central quadrilateral (using any of the first 1000 centers) that were
not true for cyclic quadrilaterals in general.

Central Quadrilaterals of Exbicentric Quadrilaterals
No new relationships were found.

27. Parallelograms

A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

Our computer study found hundreds of relationships between a parallelogram and
its central quadrilateral. Instead of listing all relationships found, we only list a
few of the interesting relationships.

Central Quadrilaterals of Parallelograms
Relationship centers

QA-P1=conic(ABCD,EFGH)=QA-P1 7, 13, 14, 17, 18, 66, 330, 485,
486
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28. Bicentric Trapezoids

A bicentric trapezoid is a trapezoid that is also bicentric.

A bicentric trapezoid is necessarily an isosceles trapezoid.

Our computer study found a few relationships between a bicentric trapezoid and
its central quadrilateral (using any of the first 1000 centers) that are not true for
bicentric quadrilaterals or isosceles trapezoids in general. These are shown in the
following table.

Central Quadrilaterals of Bicentric Trapezoids
Relationship centers

persp[ABCD,GHEF ] 35, 36, 55, 56, 145, 999

persp[ABCD,HGFE] 49, 63, 92, 186, 265, 304, 305, 317, 328, 563

29. Rhombi

A rhombus is a quadrilateral all of whose sides have the same length.

Our computer study found hundreds of relationships between a rhombus and its
central quadrilateral. Instead of listing all relationships found, we only list a few
of the interesting relationships.

Central Quadrilaterals of Rhombi
Relationship centers

[ABCD] = 3[EFGH] 13, 14

[ABCD] = 4[EFGH] 402, 620

[ABCD] = 9[EFGH] 290, 671, 903

[EFGH] = 4[ABCD] 446

Open Question 7. Are there purely geometrical proofs for the results found in
this section involving centers X13 and X14?
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30. Rectangles

A rectangle is a quadrilateral all of whose angles are right angles.

Our computer study found hundreds of relationships between a rectangle and its
central quadrilateral. Instead of listing all relationships found, we only list a few
of the interesting relationships.

Central Quadrilaterals of Rectangles
Relationship centers

[ABCD] = 25[EFGH] 95

[ABCD] = 2[EFGH] 946

[ABCD] = 4[EFGH] 402

[EFGH] = 9[ABCD] 23

[ABCD]/[EFGH] = 25/4 233

QA-P1=hyperb(ABCD,EFGH)=QA-P1 251, 315, 481, 850, 961, 998

∂[ABCD] = ∂[EFGH] 46, 47, 117, 163, 579, 580, 920

When proving these results analytically using barycentric coordinates, we use the
following result which is Theorem 6.32 in [4].

Theorem 30.1. If ABCD be a rectangle, then the central quadrilateral is also a
rectangle.

Figure 14 shows the case when n = 46. Because of this theorem, to prove that
the reference quadrilateral and the central quadrilateral have the same perimeter
(∂[ABCD] = ∂[EFGH]), it is only necessary to prove that AB+BC = EF +FG.

Figure 14. Rectangle with X46-points =⇒ ∂[ABCD] = ∂[EFGH]
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31. Squares

A square is a rectangle that is also a rhombus.

Our computer study found hundreds of relationships between a square and its
central quadrilateral. Instead of listing all relationships found, we only list a few
of the interesting relationships.

Central Quadrilaterals of Squares
Relationship centers

[ABCD] = 3[EFGH] 13, 14

[ABCD] = 49[EFGH] 183, 252

[ABCD] = 8[EFGH] 496, 613, 988

[EFGH] = 25[ABCD] 352

Open Question 8. Are there purely geometrical proofs for the results found in
this section involving centers X13 and X14?

32. Areas for Future Research

There are many avenues for future investigation.

32.1. Investigate other triangle centers.

In our study, we only investigated triangle centers Xn for n ≤ 1000. Extend this
study to larger values of n.

As an example, the following result was found by Ercole Suppa [6].

Theorem 32.1. Let ABCD be a cyclic quadrilateral. Let E, F , G, and H be
the X1173-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then
quadrilaterals ABCD and EFGH have a common circumconic (Figure 15).

Figure 15. cyclic quadrilateral with X1173-points =⇒ conic[ABCD,EFGH]
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32.2. Use other shape quadrilaterals.

In our investigation, we only studied 28 shapes of quadrilaterals as shown in
Figure 3. There are many other shapes of quadrilaterals. Study these other
shapes. For example, we say that a quadrilateral is orthoptic if its opposite sides
are perpendicular. Figure 16 shows an orthoptic quadrilateral in which AB ⊥ CD
and BC ⊥ AD. The following result was found by computer.

Theorem 32.2. Let ABCD be an orthoptic quadrilateral. Let E, F , G, and H
be the symmedian points (X6-points) of 4BCD, 4CDA, 4DAB, and 4ABC,
respectively. Then quadrilaterals ABCD and EFGH are perspective. The per-
spector is the Euler-Poncelet point (QA-P2) of quadrilateral ABCD.

Figure 16. orthoptic quadrilateral with X6-points =⇒ persp[ABCD,EFGH]

Open Question 9. Is there a purely geometrical proof of this result?

An orthocentric quadrilateral is a quadrilateral in which each vertex is the ortho-
center of the triangle formed by the other three vertices. The following result was
found by computer.

Theorem 32.3. Let ABCD be an orthocentric quadrilateral. Let E, F , G, and
H be the Feuerbach points (X11-points) of 4BCD, 4CDA, 4DAB, and 4ABC,
respectively. Then quadrilateral EFGH is cyclic and the center of the circumcircle
of EFGH coincides with the centroid of quadrilateral ABCD (Figure 17).

Figure 17. orthocentric quad with X11-points =⇒ m[ABCD] = o[EFGH]

Open Question 10. Is there a purely geometrical proof of this result?
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32.3. Check for other quadrilateral centers.

In our study, when we checked to see if some center of the central quadrilateral
coincides with some center of the reference quadrilateral, we only checked the
common centers listed in Table 2. Additional centers could be investigated, such
as the Miquel point (QL-P1), the area centroid (QG-P4), the Morley Point (QL-
P2), the Newton Steiner point (QL-P7), and the various quasi points.

32.4. Investigate centers lying on quadrilateral lines.

We could also check to see if some center of the central quadrilateral lies on some
notable line of the reference triangle, such as the Newton line (QL-L1), the Steiner
line (QL-L2), etc., or, in the case of cyclic quadrilaterals, the Euler line.

32.5. Examine other properties.

There are many other properties between two quadrilaterals that can be studied.

For example, two polygons are orthogonal if their corresponding sides are perpen-
dicular.

The following result was found by computer.

Theorem 32.4. Let ABCD be a trapezoid. Let E, F , G, H be the X3-points of
4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then quadrilaterals ABCD
and HGFE are orthogonal (Figure 18).

Figure 18. trapezoid with X3-points =⇒ ortho(ABCD,EFGH)

Open Question 11. Is there a center, X, such that quadrilaterals ABCD and
EFGH have a common inconic?

Open Question 12. Is there a center, X, and a tangential quadrilateral ABCD,
such that the central quadrilateral EFGH formed with X-points is also tangen-
tial and ABCD and EFGH have a common incircle? What about concentric
incircles?
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32.6. Investigate patterns in the center functions.

Many properties found are true for triangle centers Xn for a list of values for n.
What significance do these values have? Specifically, investigate the center func-
tions associated with these centers to see if some pattern can be found.

For example, it has been found that if ABCD is cyclic, then ABCD and EFGH
have a common non-circular circumconic for centers Xn when n =4, 6, 54, 64,
1173, 11738, 3426, 3431, 11270, 13472, 13603, 14483, 14487, 14490, 14528, 16835,
11738... What is the significance of these values of n?

Dylan Wyrzykowski [13] has found the pattern with the following theorem.

Theorem 32.5. Let ABCD be a cyclic quadrilateral. Let E, F , G, and H
be the Xn-points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively, where
the isogonal conjugate of Xn lies on the Euler line and has constant Shinagawa
coefficients. Then quadrilaterals ABCD and EFGH have a common circumconic.

We found in Section 14, that in a cyclic quadrilateral, ABCD and EFGH are
homothetic for centers Xn when n =2, 4, 5, 20, 140, 376, 381, 382, 546- 550, 631,
and 632. What is the pattern giving rise to these values of n?

We found the following result.

Theorem 32.6. Let ABCD be a cyclic quadrilateral. Let X be a triangle center
whose (trilinear) center function is of the form cosB cosC + k cosA, where k is
some constant, not necessarily an integer. Let E, F , G, and H be the X-points of
4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then quadrilaterals ABCD
and EFGH are homothetic.

Note. These are the points on the Euler line that have constant Shinagawa
coefficients.

For similar results involving these points, see [4].

We found in Section 21, that if quadrilateral ABCD is harmonic, then using
centers Xn, we have persp[ABCD,GHEF ] when n=15, 16, 61, 62, 371, and 372.
What is the pattern in these numbers? We found the following result by computer.

Theorem 32.7. Let ABCD be a harmonic quadrilateral. Let X be a trian-
gle center whose center function is of the form a (k(a2 − b2 − c2)− S), where k
is some constant and S = 2[ABC]. Let E, F , G, and H be the X-points of
4BCD, 4CDA, 4DAB, and 4ABC, respectively. Then quadrilaterals ABCD
and GHEF are perspective.

Another result, found by computer, involving a set of centers meeting a pattern
is the following.

A power point of a triangle is a triangle center whose center function is of the
form f(a, b, c) = ak, where k is a constant (not necessarily an integer).

Theorem 32.8. Let ABCD be a parallelogram. Let X be some power point of a
triangle. Let E, F , G, and H be the X-points of 4BCD, 4CDA, 4DAB, and
4ABC, respectively. Then quadrilaterals ABCD and EFGH have a common
diagonal point.
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32.7. Ask about uniqueness. Find an entry in one of our tables where there is
only one center giving a particular relationship for a certain type of quadrilateral.
For example, for a general quadrilateral, m[ABCD] = m[EFGH] seems to be
true only when n = 2. Is this because we only searched the first 1000 values of n?
Expand the search and find other values of n for which the relationship is true or
prove that the result is unique. For example, we can state the following.

Conjecture 1. Let ABCD be an arbitrary quadrilateral. Let X denote a triangle
center. Let E, F , G, and H be the X-points of 4BCD, 4CDA, 4DAB, and
4ABC, respectively. Then the centroid of ABCD coincides with the centroid of
EFGH if and only if X = X2.

32.8. Use notable points that are not triangle centers.

There are other points associated with a triangle that are not triangle centers.
Look for properties when some of these points are used. For example, the following
result was found by computer.

Theorem 32.9. Let ABCD be a square. Let E, F , G, and H be the first Brocard
points of 4BCD, 4CDA, 4DAB, and 4ABC, respectively (Figure 19). Then

[ABCD] = 5[EFGH].

Figure 19. square with Brocard points =⇒ [ABCD] = 5[EFGH]

Open Question 13. Is there a purely geometrical proof of this result?

32.9. Place different centers in different half triangles.

Would we find any interesting results if we place Xn-points in triangles ABC and
ACD, but place Xm points in triangles ABD and BCD, with m 6= n?

32.10. Investigate some QL-properties.

If the lines AE, BF , CG, and DH do not concur, then these four lines (with
their points of intersection) form a figure known as a complete quadrilateral. A
complete quadrilateral has many notable points associated with it, such as the
Miquel Point, the Morley Point, the Clawson Center, and the Newton-Steiner
Point. For a more extensive list see the section on Quadrilateral Points in [7].
Investigate whether any of these points coincide with notable points associated
with the reference quadrilateral, ABCD.
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32.11. Work in 3-space.

If point D is moved off the plane of 4ABC, then the reference quadrilateral
becomes a tetrahedron and the half triangles become the faces of the reference
tetrahedron. The central quadrilateral becomes the central tetrahedron. Inves-
tigate how the central tetrahedron is related to the reference tetrahedron. Some
results can be found in [3].
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