Conic Sections and Limits

Stanley Rabinowitz
Far Rockaway High School
Far Rockaway, New York

The standard form of an ellipse is

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

where the center is (h, k) and a and b are the lengths of the semi-major and semi-minor axes. Also, $a^{2}=b^{2}+c^{2}$ where c is the distance from the center to a focus.

Figure 1

Consider an ellipse (see Fig. 1) which passes through the origin and has its foci at the points $(2 p, 0)$ and $(2 t, 0)$. Its center is at $(p+t, 0), p>0$.

$$
\begin{gathered}
h=p+t \quad k=0 \quad a=p+t \quad c=t-p \\
b=\sqrt{a^{2}-c^{2}}=\sqrt{(t+p)^{2}-(t-p)^{2}}=\sqrt{4 p t}
\end{gathered}
$$

Hence the equation of the ellipse is

$$
\frac{[x-(p+t)]^{2}}{(p+t)^{2}}+\frac{y^{2}}{4 p t}=1 .
$$

It is now necessary to show that if p remains constant and $t \rightarrow \infty$, the curve approaches the shape of a parabola. Solving for y^{2},

$$
\begin{aligned}
y^{2} & =4 p t\left[1-\frac{(x-[p+t])^{2}}{(p+t)^{2}}\right] \\
& =4 p t-\frac{4 p t[x-(p+t)]^{2}}{(p+t)^{2}} \\
& =\frac{4 p t(p+t)^{2}-4 p t[x-(p+t)]^{2}}{(p+t)^{2}}
\end{aligned}
$$

and after simplifying,

$$
y^{2}=4 p t x(2 t+2 p-x) /(p+t)^{2}
$$

Letting $t=1 / u$,

$$
y^{2}=\frac{4 p x(2 / u+2 p-x)}{u(p+1 / u)^{2}}=\frac{4 p x(2+2 p u-u x)}{p^{2} u^{2}+2 p u+1}
$$

From this form it can be seen that as $t \rightarrow \infty$ or $u \rightarrow 0$, the equation of the curve approaches $y^{2}=8 p x$ which is the equation of a parabola. Q.E.D.

Another fact, not so obvious, is that a parabola is also a limiting case of a hyperbola as one focus tends to infinity.

The proof is similar. The standard form of a hyperbola is

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

where $c^{2}=a^{2}+b^{2}$.
Consider a hyperbola which passes through the origin and has its foci at the points $(2 p, 0)$ and $(2 t, 0)$. See Figure 2. (Note that $c=t-p$ since $p<0$ and so $b^{2}=-4 p t$.)

Figure 2
Its equation is

$$
\frac{[x-(p+t)]^{2}}{(p+t)^{2}}-\frac{y^{2}}{-4 p t}=1
$$

or

$$
\frac{[x-(p+t)]^{2}}{(p+t)^{2}}+\frac{y^{2}}{4 p t}=1
$$

This is exactly the same as the equation for the ellipse except that $p<0$. Therefore the rest of the proof is exactly the same and as $t \rightarrow \infty$, the curve approaches the curve $y^{2}=8 p x$ (which in this case is a parabola opening to the left).

