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Why are the Exponents the Same?

Stanley Rabinowitz
12 Vine Brook Road
Westford, MA 01886

(Received 4 May 1990)

It is shown that certain Diophantine equations, involving
sums of powers of variables with relatively prime exponents,
are easy to solve.

Why is it that the most interesting, unsolved, or unsolvable Diophantine equations
have all the exponents the same?

When taking a course in number theory, or when looking through standard books on
Diophantine equations (such as [1], [2], [4], [5]), one comes across equations such as

x2 + y2 = z2 + w2,

x2 − Dy2 = z2

x4 + y4 = z4 + w4,

x4 + y4 = cz4

x4 + y4 + z4 + w4 = t4,

xn + yn = znand

in which all the exponents are equal. One also frequently runs across Diophantine equations
like

x2 + y2 = z4

x4 + y4 = z2and

in which most of the exponents are the same.
Why is it that we do not run across equations like

x3 + y7 = z17 (1)

more often? Are such equations that much harder?
The answer is just the opposite. Such equations are usually easier to solve. We will

illustrate this fact in this note. These facts are known in the literature (see [3] problem
64, [6], [7], [8], [9]), but appear to be little-known in the classroom.

For example, to find solutions to equation (1), we can let

x = X28, y = Y 12, and z = Z5,
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to get
X84 + Y 84 = Z85. (2)

Some solutions to this equation are given by the two parameter family

X = m(m84 + n84)

Y = n(m84 + n84)

Z = (m84 + n84)

where m and n are arbitrary integers. These solutions can readily be verified by substi-
tuting into equation (2).

This same trick works any time we can get the Diophantine equation into the form of
equation (2) with all exponents of n on the left and an exponent of n + 1 on the right.

Lemma. Let k and n be positive integers and let a0, a1, . . . , ak be non-zero integers. Then
the Diophantine equation

a1y
n
1 + a2y

n
2 + · · · + akyn

k = a0y
n+1
0 (3)

has infinitely many integral solutions (y0, y1, . . . , yk).

Proof. Infinitely many solutions are given by

yi =
ci

a0
(a1c

n
1 + a2c

n
2 + · · · + akcn

k ), i = 0, 1, . . . , k,

where the cj are arbitrary integral multiples of a0 for j = 1, 2, . . . , k and c0 = 1. This is
easily verified by substituting into equation (3) and verifying that the result is an identity.
The requirement that the cj (other than c0) be multiples of a0 ensures that all the yi are
integers.

To transform equation (1) into the form specified in this lemma, we found a common
multiple of 3 and 7 that was one less than a multiple of 17. When the exponents are
relatively prime, this can always be done. The following result (from [8]) shows when we
can get such equations into the proper form.

Theorem. Let k be a positive integer and let a0, a1, . . . ak be arbitrary non-zero integers.
Let r0, r1, . . . , rk be positive integers such that gcd(ri, r0) = 1 for i = 1, 2, . . . , k. Then the
Diophantine equation

a1x
r1
1 + a2x

r2
2 + · · · + akxrk

k = a0x
r0
0 (4)

has infinitely many integral solutions (x0, x1, . . . , xk).

Proof. Let r be the least common multiple of r1, r2, . . . , rk.
It follows from gcd(ri, r0) = 1 for i = 1, 2, . . . , k that gcd(r, r0) = 1. Thus there are

positive integers p and q such that

qr0 − pr = 1.
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Then any solution (y0, y1, . . . , yk) of

a1y
pr
1 + a2y

pr
2 + · · · + akypr

k = a0y
qr0
0 (5)

provides a solution (x0, x1, . . . , xk) to equation (4) with xi = y
pr/ri

i , i = 1, 2, . . . , k and
x0 = yq

0. But equation (5) has infinitely many solutions by the lemma, since qr0 = pr + 1.
Therefore equation (4) has infinitely many solutions.
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