Why are the Exponents the Same?

Stanley Rabinowitz

12 Vine Brook Road
Westford, MA 01886
(Received 4 May 1990)
It is shown that certain Diophantine equations, involving sums of powers of variables with relatively prime exponents, are easy to solve.

Why is it that the most interesting, unsolved, or unsolvable Diophantine equations have all the exponents the same?

When taking a course in number theory, or when looking through standard books on Diophantine equations (such as [1], [2], [4], [5]), one comes across equations such as
and

$$
\begin{aligned}
x^{2}+y^{2} & =z^{2}+w^{2}, \\
x^{2}-D y^{2} & =z^{2} \\
x^{4}+y^{4} & =z^{4}+w^{4}, \\
x^{4}+y^{4} & =c z^{4} \\
x^{4}+y^{4}+z^{4}+w^{4} & =t^{4},
\end{aligned}
$$

$$
x^{n}+y^{n}=z^{n}
$$

in which all the exponents are equal. One also frequently runs across Diophantine equations like
and

$$
\begin{aligned}
& x^{2}+y^{2}=z^{4} \\
& x^{4}+y^{4}=z^{2}
\end{aligned}
$$

in which most of the exponents are the same.
Why is it that we do not run across equations like

$$
\begin{equation*}
x^{3}+y^{7}=z^{17} \tag{1}
\end{equation*}
$$

more often? Are such equations that much harder?
The answer is just the opposite. Such equations are usually easier to solve. We will illustrate this fact in this note. These facts are known in the literature (see [3] problem $64,[6],[7],[8],[9])$, but appear to be little-known in the classroom.

For example, to find solutions to equation (1), we can let

$$
x=X^{28}, \quad y=Y^{12}, \quad \text { and } \quad z=Z^{5},
$$

$\overline{\text { Reprinted from the International Journal of Mathematical }}$
Education in Science and Technology, 22(1991)687-689
to get

$$
\begin{equation*}
X^{84}+Y^{84}=Z^{85} \tag{2}
\end{equation*}
$$

Some solutions to this equation are given by the two parameter family

$$
\begin{aligned}
& X=m\left(m^{84}+n^{84}\right) \\
& Y=n\left(m^{84}+n^{84}\right) \\
& Z=\left(m^{84}+n^{84}\right)
\end{aligned}
$$

where m and n are arbitrary integers. These solutions can readily be verified by substituting into equation (2).

This same trick works any time we can get the Diophantine equation into the form of equation (2) with all exponents of n on the left and an exponent of $n+1$ on the right.
Lemma. Let k and n be positive integers and let $a_{0}, a_{1}, \ldots, a_{k}$ be non-zero integers. Then the Diophantine equation

$$
\begin{equation*}
a_{1} y_{1}^{n}+a_{2} y_{2}^{n}+\cdots+a_{k} y_{k}^{n}=a_{0} y_{0}^{n+1} \tag{3}
\end{equation*}
$$

has infinitely many integral solutions $\left(y_{0}, y_{1}, \ldots, y_{k}\right)$.
Proof. Infinitely many solutions are given by

$$
y_{i}=\frac{c_{i}}{a_{0}}\left(a_{1} c_{1}^{n}+a_{2} c_{2}^{n}+\cdots+a_{k} c_{k}^{n}\right), \quad i=0,1, \ldots, k
$$

where the c_{j} are arbitrary integral multiples of a_{0} for $j=1,2, \ldots, k$ and $c_{0}=1$. This is easily verified by substituting into equation (3) and verifying that the result is an identity. The requirement that the c_{j} (other than c_{0}) be multiples of a_{0} ensures that all the y_{i} are integers.

To transform equation (1) into the form specified in this lemma, we found a common multiple of 3 and 7 that was one less than a multiple of 17 . When the exponents are relatively prime, this can always be done. The following result (from [8]) shows when we can get such equations into the proper form.

Theorem. Let k be a positive integer and let $a_{0}, a_{1}, \ldots a_{k}$ be arbitrary non-zero integers. Let $r_{0}, r_{1}, \ldots, r_{k}$ be positive integers such that $\operatorname{gcd}\left(r_{i}, r_{0}\right)=1$ for $i=1,2, \ldots, k$. Then the Diophantine equation

$$
\begin{equation*}
a_{1} x_{1}^{r_{1}}+a_{2} x_{2}^{r_{2}}+\cdots+a_{k} x_{k}^{r_{k}}=a_{0} x_{0}^{r_{0}} \tag{4}
\end{equation*}
$$

has infinitely many integral solutions $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$.
Proof. Let r be the least common multiple of $r_{1}, r_{2}, \ldots, r_{k}$.
It follows from $\operatorname{gcd}\left(r_{i}, r_{0}\right)=1$ for $i=1,2, \ldots, k$ that $\operatorname{gcd}\left(r, r_{0}\right)=1$. Thus there are positive integers p and q such that

$$
q r_{0}-p r=1
$$

Then any solution $\left(y_{0}, y_{1}, \ldots, y_{k}\right)$ of

$$
\begin{equation*}
a_{1} y_{1}^{p r}+a_{2} y_{2}^{p r}+\cdots+a_{k} y_{k}^{p r}=a_{0} y_{0}^{q r_{0}} \tag{5}
\end{equation*}
$$

provides a solution $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$ to equation (4) with $x_{i}=y_{i}^{p r / r_{i}}, i=1,2, \ldots, k$ and $x_{0}=y_{0}^{q}$. But equation (5) has infinitely many solutions by the lemma, since $q r_{0}=p r+1$. Therefore equation (4) has infinitely many solutions.

References

[1] Robert D. Carmichael, Diophantine Analysis. Dover Publications, Inc. New York: 1981.
[2] Leonard Eugene Dickson, Introduction to the Theory of Numbers. Dover Publications, Inc. New York: 1957.
[3] Angela Fox Dunn, Second Book of Mathematical Bafflers. Dover Publications, Inc. New York: 1983.
[4] Richard K. Guy, Unsolved Problems in Number Theory. Springer-Verlag. New York: 1981.
[5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, fifth edition. Oxford at the Clarendon Press. Oxford: 1979.
[6] R. B. Killgrove, "The Sum of Two Powers is a Third, Sometimes", The Fibonacci Quarterly. 14(1976)206-209.
[7] Murray S. Klamkin, "Comment on Quickie 572", Mathematics Magazine. 47(1974)177178.
[8] Stanley Rabinowitz, "Solution to Problem 839", Crux Mathematicorum. 10(1984)234235.
[9] Norman Schaumberger, "Solution to Q572", Mathematics Magazine. 46(1973)176.

