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1. Introduction

In this paper, we will study geometrical properties of the plane curve with equation

(1) (x2 + y2)2 = c2x2 + d2y2

with c > d > 0. Such curves are called hippopedes or ovals of Booth [16].

Figure 1. Hippopede axes and vertices

We start by surveying the literature for known results about the hippopede and
then give additional results that were found by computer.

From Equation (1), we see that a hippopede is symmetric about the origin and
symmetric about each coordinate axis. The x-intercepts, known as the vertices of
the hippopede, are at (±c, 0). They will be labeled Xand Y . The y-intercepts,
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which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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2 Geometric Properties of a Hippopede

known as the covertices of the hippopede, are at (0,±d). They will be labeled U
and V as shown in Figure 1.

The values x = 0 and y = 0 satisfy Equation (1), so, technically, the origin is part
of the curve. However, for our purposes, the hippopede shall consist of only the
blue continuous curve shown in Figure 1. The point O is called the center of the
hippopede. The hippopede is peanut-shaped for d

c
< 1

2

√
2 and convex otherwise.

2. Known Results

The following result comes from [3].

Theorem 1. Let O be the center of a hippopede, H. Let C be a circle with center
O as shown in Figure 2. Then the inverse of H with respect to C is an ellipse, E.

Figure 2. Ellipse E is inverse of hippopede H about circle C

According to [17], a hippopede is the pedal curve of an ellipse. This gives us the
following result.

Theorem 2. Let O be the center of a hippopede with axes XY and UV . Let E
be the ellipse with major axis XY and minor axis UV . Let P be any point on
the hippopede. Let PT be a tangent to the ellipse as shown in Figure 3. Then
OP ⊥ PT .

Figure 3. red lines are perpendicular
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The equation of the hippopede can be expressed as a geometric result as follows.

Theorem 3. A hippopede has center O and axes XY and UV . Let P be any point
on the hippopede and let the feet of the perpendiculars from P to XY and UV be
H1 and H2, respectively. Circles C1 and C2 are constructed on H1Y and H2U as
diameters. Tangents OT1 and OT2 are drawn to circles C1 and C2 as shown in
Figure 4. Then (OT1)

4 + (OT2)
4 = (OP )4.

Figure 4. (OT1)
4 + (OT2)

4 = (OP )4

Proof. Let OH1 = x and OH2 = y, so that the coordinates of P are (x, y) and
(OP )2 = x2 + y2. Since OY = c and OH1 · OY = (OT1)

2, we have (OT1)
2 = cx.

Similarly, (OT2)
2 = dy. From the equation of the hippopede, we have (x2 +y2)2 =

c2x2 + d2y2 which implies (OP )4 = (OT1)
4 + (OT2)

4. �

The following result comes from [17]. Related results can be found in [10].

Theorem 4. Let O be the center of a hippopede with axes XY and UV . Let E
be the ellipse with major axis XY and minor axis UV . Let P be any point on the
hippopede and suppose PT is tangent to the ellipse as shown in Figure 5. Then
the circle with diameter OT is tangent to the hippopede at P .

Figure 5. circle is tangent to hippopede

Note that this result gives us a way to construct the tangent to a hippopede at a
given point P . Construct the ellipse E and then construct a tangent PT from P
to E. The line from P to the midpoint of OT is then a normal to the hippopede
and the perpendicular to the normal at P is a tangent.

Another way of looking at this result is that if T is a variable point on a fixed
ellipse with center O, then the envelope of the circles with diameter OT is a
hippopede.
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The following result from [11] is related to the previous result.

Theorem 5. Let P be any point on a hippopede with center O. Let T be the tan-
gent to the hippopede at P . A circle passing through O is tangent to the hippopede
at P . Let U be the tangent to the circle at O as shown in Figure 6. Then T is the
reflection of U about m, the perpendicular bisector of OP .

Figure 6. T is reflection of U about m

Proof. If T and U meet at point I, then IO and IP are both tangents to the circle
from I and the result follows. �

The following theorem is a variation on a result that comes from [10].

Theorem 6. Let O be the center of a hippopede, H, with axes XY and UV . Let
E be the ellipse with major axis XY and minor axis UV . Let F and G be the foci
of the ellipse. Let X ′ be the midpoint of XO and let F ′ be the midpoint of FO.
Let C be the circle with center O and radius OX ′. Let P be any point on C and
let PF ′ meet C again at Q, Finally, a line through O parallel to PQ meets the
hippopede at W as shown in Figure 7. Then PQ = OW .

Figure 7. red lengths are equal
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A hippopede is a bicircular quartic, so by [6, p. 307], we have the following result.

Theorem 7. Let O be the center of a hippopede. Suppose a secant meets the
hippopede at four points, A, B, C, and D as shown in Figure 8. Let M be the
midpoint of AB and let N be the midpoint of CD. Then OM = ON .

Figure 8. red lengths are equal

If we let two of the points coincide, we get the following results.

Corollary 8. Let O be the center of a hippopede. Suppose a tangent to the hip-
popede touches the hippopede at P and meets it again at points A and B (with B
between A and P ) as shown in Figure 9. Let M be the midpoint of AB. Then
OM = OP .

Figure 9. red lengths are equal
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Corollary 9. Let O be the center of a hippopede. Suppose a tangent to the hip-
popede touches the hippopede at P and meets it again at points A and B (with P
between A and B) as shown in Figure 10. Let M be the midpoint of BP and let
N be the midpoint of AP . Then OM = ON .

Figure 10. red lengths are equal

Keito Miyamoto [9] found the following result as a generalization of a similar
result [15] for lemniscates.

Theorem 10. Let O be the center of a hippopede. Suppose a variable secant meets
the hippopede at four points, A, B, C, and D as shown in Figure 11. Let P be the
center of �OAB and let Q be the center of �OCD. Then OP ·OQ = (c2−d2)/4.

Figure 11. red length times green length is invariant
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3. The Hippopede as a Locus

The following result comes from [10].

Theorem 11. Let A be a fixed point inside a circle with center O. Let P be a
variable point on the circle. Let line PA meet the circle again at B. Locate point
Q so that OQ is equal and parallel to AB as shown in Figure 12. Then the locus
of Q as P moves on the circle is a hippopede.

Figure 12. blue locus is a hippopede

Ferréol has noted [5] that a hippopede is the cissoid between two circles situated
in a certain manner. This is explained in the following theorem.

Theorem 12. Let O be a fixed point. Let C1 be a fixed circle through O. Let C2 be
a fixed circle whose center, F , is the antipode of O in C1. Let P be a variable point
on C1. Let line OP meet C2 at Q and Q′ and locate point M so that OM = PQ.
Locate M ′ so that OM ′ = PQ′ as shown in Figure 13. Then the locus of M and
M ′ as P moves on C1 is a hippopede, H.

Figure 13. hippopede H is cissoid of red circles
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Ferréol also notes [5] that a hippopede is the roulette formed by the center of
an ellipse as it rolls along a congruent ellipse. This is explained in the following
theorem.

Theorem 13. Let E1 be a fixed ellipse with foci F and G. Let P be a variable
point on E1. Extend GP through P to a point F ′ so that GF ′ is equal to the length
of the major axis of E1. Extend FP through P to a point G′ so that FG′ is equal
to the length of the major axis of E1. Note that the ellipse E2 with foci F ′ and G′

is congruent to E1 and tangent to E1 at P . Let O be the center of E2 as shown
in Figure 14. Then the locus of O as P moves on E1 is a hippopede, H.

Figure 14. blue locus is a hippopede

Ferréol [5] also states the following two results.

Theorem 14. Let O be a fixed point inside a fixed circle C. Let P be a variable
point on C. Line PO meets the circle again at P ′. Extend OP ′ past P ′ to a point
M such that PO = P ′M as shown in Figure 15. Then the locus of M as P moves
on C is a hippopede, H.

Figure 15. blue locus is a hippopede
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Theorem 15. Let C1 and C2 be fixed circles with centers O1 and O2, respectively.
Let P be a variable point on C2. Let Q be a point on C1 such that PQ = O1O2.
Let M be the midpoint of PQ as shown in Figure 16. Then the locus of M as P
moves on C2 is a hippopede.

Figure 16. blue locus is a hippopede

4. New Results

The following result was found by computer.

Theorem 16. Let O be the center of a hippopede. Let A and B be two points on
the hippopede such that OA ⊥ OB as shown in Figure 17. Then AB =

√
c2 + d2.

Figure 17. red length is invariant

Proof. Letting x = r cos θ and y = r sin θ, we see that the polar equation for a
hippopede is

r2 = c2 cos2 θ + d2 sin2 θ.

If θ is the angle OB makes with the positive x-axis, then the angle that OA makes
with the positive x-axis is θ + 90◦. Then OB2 + OA2 = c2 cos2 θ + d2 sin2 θ +
c2 cos2(θ+ 90◦) + d2 sin2(θ+ 90◦) = c2 cos2 θ+ d2 sin2 θ+ c2(− sin θ)2 + d2 cos2 θ =
c2(cos2θ + sin2 θ) + d2(sin2 θ + cos2 θ) = c2 + d2. �
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The following result was found by computer.

Theorem 17. Let O be the center of a hippopede with vertices X and Y . Let XD
be a tangent to the hippopede as shown in Figure 18. Let t = XD and r = OD.

Then t2 =
c2(c2 − r2)
c2 − 2r2

.

Figure 18. t2 = c2(c2−r2)
c2−2r2

Proof. Let O be at the origin, X = (−c, 0), and D = (x, y). Then

(2) x2 + y2 = r2

and

(3) (x+ c)2 + y2 = t2.

Implicitly differentiating the equation of the hippopede (1) with respect to x, gives

2(x2 + y2)(2x+ 2yy′) = 2c2x+ 2d2yy′

and solving for y′ gives

(4) y′ =
c2x− 2x3 − 2xy2

y (2x2 + 2y2 − d2)
.

Since y′ represents the slope of line XD, we have

(5)
x(c2 − 2x2 − 2y2)

y (2x2 + 2y2 − d2)
=

y

x+ c
.

Eliminating x, y, and d from Equations (1), (2), (3), and (5), using Mathematica,
gives

t2(c2 − 2r2) = c2(c2 − r2)
which is the desired result. �

The following result was found by computer.

Theorem 18. Let O be the center of a hippopede with vertices X and Y and
suppose that c > d

√
5. Let XD be a tangent to the hippopede. Two possible

locations for D are shown in Figure 19. Let t = XD. Then

t2 = c
3(c2 − d2)±

√
(c2 − d2)(c2 − 5d2)

2(c2 − d2)
.

Note that point D2 is not on the y-axis.
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Figure 19. t2 = c
(

3(c2 − d2)±
√

(c2 − d2)(c2 − 5d2)
)
/2(c2 − d2)

The following result was found by computer.

Theorem 19. Let O be the center of a hippopede with vertices X and Y and
suppose that PQ is a tangent parallel to XY as shown in Figure 20. Let M be the
midpoint of OY and let 4YMR be an isosceles right triangle. Then OQ = Y R.

Figure 20. red lengths are equal

Proof. The tangent has slope 0, so let y = 0 in Equation (4). If the coordinates

of Q are (x, y), then c2 = 2x2 + 2y2, so OQ =
√
x2 + y2 = c/

√
2. Since MY =

MR = c/2, RY also equals c/2, so OQ = Y R. �

Incidentally, solving c2 = 2x2 + 2y2 and (x2 + y2)2 = c2x2 + d2y2 for x and y gives

x =
c

2
·
√
c2 − 2d2√
c2 − d2

y =
c

2
· c√

c2 − d2
.

Thus, we see that in Figure 20, PQ = 2x =
c
√
c2 − 2d2√
c2 − d2

and the distance from P

to XY is
c

2
· c√

c2 − d2
.
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The following result was found by Keita Miyamoto [9].

Theorem 20. Let O be the center of a hippopede with vertices X and Y . A point
P is located on XY , with OP = p, as shown in Figure 21. Then the radius of the
incircle with center P is

r =

√√√√p2 + d2

(
1

2
+

√
1

4
− p2

c2 − d2

)
.

Figure 21. r =

√
p2 + d2

(
1
2

+
√

1
4
− p2

c2−d2

)

5. Constructions

These constructions assume that your dynamic geometry environment allows
drawing a locus and can find the intersection of a line or circle with a locus.

The following construction comes from [4, p. 110].

Construction EllipseOAB.
Given: Three non-collinear points, O, A, and B.
Constructs: the ellipse E with center O that passes through A and B.
Also constructs: the foci F1 and F2 of the ellipse, as well as the axes.

1. A′ = reflect(A,O), B′ = reflect(B,O).
2. L1 = perp(B,AA′).
3. r = OA.
4. {Q1, Q} = L1 ∩ �B(r).
5. L2 = angleBisector(OQ,OQ1).
6. L3 = perp(O,L2).
7. {q, q1} = O(Q) ∩OQ1.
8. a = Q1q/2, b = Q1q1/2.
9. X = O(a) ∩ L2, {Y, Y ′} = O(b) ∩ L3.

10. {F1, F2} = Y (a) ∩
←→
OX.

11. E = ellipse(F1, F2, Y ).

Note 1. The lengths of the semi-major and semi-minor axes of the ellipse are a
and b, respectively.

Note 2. Lines AA′ and BB′ are conjugate diameters of the ellipse.
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Since a hippopede is the inverse of an ellipse about a concentric circle, we get the
following construction.

Construction HippopedeOAB.
Given: Three non-collinear points, O, A, and B.
Constructs: the hippopede H with center O that passes through A and B.
Also constructs: the vertices and covertices of the hippopede.

1. B′ = inverse(B,O(A)).
2. {E , X,X ′, Y, Y ′} = ellipseOAB(O,A,B′).
3. Let Q ∈ E .
4. P = inverse(Q,O(A)).
5. H = locus(P,Q, E).
6. V = inverse(X,O(A)).
7. V ′ = inverse(X ′, O(A)).
8. U = inverse(Y,O(A)).
9. U ′ = inverse(Y ′, O(A)).

The following construction comes from [13].

Construction EPP.
Given: a conic E and two points P1 and P2.
Constructs: a circle C with center O tangent to the conic and passing through
the two points.

1. Let V ∈ E .
2. T = tangentAt(E , V ).
3. N = perp(T, V ).
4. B1 = perpBisector(V P2).
5. X = N ∩B1.
6. L = locus(X, V, E).
7. B2 = perpBisector(P1P2).
8. O = B2 ∩ L.
9. C = O(P1).

Note 1. The locus L represents all points that are equidistant from E and P2.
The perpendicular bisector B2 represents all points equidistant from P1 and P2.

Note 2. The name “EPP” is a mnemonic for “Ellipse/Point/Point”, however,
the construction works for all conics, not just ellipses.

Note 3. There are typically two solutions. There are usually two points where L
meets B2. Figure 22 shows two circles tangent to an ellipse and passing through
two fixed points inside the ellipse.

Note 4. This construction only constructs the circle. It does not construct the
touch point with the conic. The next construction can be used to find the touch
point.



14 Geometric Properties of a Hippopede

Figure 22. two circles tangent to E passing through P1 and P2

The following construction comes from [7].

Construction TouchPointsOfConicWithCircle.
Given: Two points F1 and F2 and a circle O(A).
Constructs: the points P1, P2, P3, P4 where a central conic having foci F1 and F2

touches this circle

1. k = CF2 r = OA/k.
2. C = midpt(F1, F2).
3. H = foot(O,F1F2).
4. a = CH/k, b = OH/k.
5. M = midpt(C,O).
6. {D,E} = �M(O) ∩ �O(A).
7. G = OH ∩DE, F = perp(O,OH) ∩DE.
8. c = a2 + b2 − r2.
9. rad = (c+ 1)2 − 4a2.

10. µ =
(
c+ 1 +

√
rad
)
/(2a).

11. K = �(C, kµ)∩
−−→
CH, J = �(C, k/µ)∩

−−→
CH.

12. C = conic(J,K, F,G,O).
13. (P1, P2, P3, P4) = C ∩ �O(A).

Note 1. If we set up a Cartesian coordinate system with origin at C and F2 at
(1, 0), then the coordinates of O are (a, b). The value k is the unit distance.

Note 2. There are two ellipses with foci F1 and F2 that touch the circle; and
there are two hyperbolas with foci F1 and F2 that touch the circle. Figure 23
shows the two ellipses.

Figure 23. two ellipses with foci F1 and F2 tangent to circle O(A)
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Note 3. The point P1 is the one closest to C. It is the point where the ellipse with
foci F1 and F2 touches O(A) externally. The point P3 is the one furthest from C.
It is the point where the ellipse with foci F1 and F2 touches O(A) internally.

Construction pointOnSameSideOfLine.
Given: Five points, P , Q, A, B, and X with A and B on opposite sides of PQ.
Constructs: the point Z (which is either A or B) that is on the same side of PQ
as X.

1. M = midpt(A,B).
2. C = M(A).

3. I =
←→
AB ∩

←→
PQ.

4. Y =
←→
AB ∩ parallel(X,PQ).

5. Z =
−→
IY ∩ C.

Construction tangentAtHippopede.
Given: Hippopede H with center O, vertex Y , and covertex U .
Also given: point P on the hippopede.
Constructs: the tangent T to the hippopede at P .

1. E = ellipseOAB(O, Y, U).
2. {F1, F2} = U(OY ) ∩XY .
3. {T1, T2} = tangentFrom(P, E).
4. Z = pointOnSameSideOfLine(U, V, T1, T2, P ).
5. M = midpt(O,Z).
6. T = perp(P, PM).

Construction tangentToHippopede.
Given: Hippopede H with center O, vertex Y , and covertex U .
Also given: point P outside the hippopede.
Constructs: the tangent PT from the point P to the hippopede.

1. Y ′ = inverse(Y,O(U))
2. E = ellipseOAB(O, Y ′, U).
3. {F1, F2} = Y ′(OU) ∩ UV .
4. P ′ = inverse(P,O(U)).
5. C = EPP(E,P ′, O).
6. P3 = TouchPointsOfConicWithCircle(F1, F2, C).
7. T = inverse(P3, O(U)).

Note. There will be two solutions because there are two solutions to the EPP
construction in step 5.
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6. Foci

According to [14, p. 119], a focus of a plane curve is a point such that the lines
joining it to the two imaginary points on a circle at infinity both touch the curve.
Also, [18, p. 56] and [6, p. 69] and [1, p. 47] and [14, p. 119] defines a focus as a
point where tangents from the circular points at infinity meet.

We prefer the equivalent formulation given in [2]. Point F is said to be a focus of
a curve C if two tangent lines having slopes i and −i can be drawn from F to C.

Let us now find the foci of the curve whose equation is

(6) (x2 + y2)2 = c2x2 + d2y2

with c > d > 0.

Let P = (x0, y0) be a point in the plane of the curve. The equation of a line
through P with slope i is

(7) y − y0 = i(x− x0).
To find the points where this line meets the curve, we solve Equations (6) and (7)
simultaneously for x and y. We find that there are two points of intersection,(√

A+B

C
,

i
√
A+B′

C

)
and (

−
√
A+B

C
,
−i
√
A+B′

C

)
where

A = c2(x0 + iy0)
2
(
d2 + (x0 + iy0)

2
)
− d2(x0 + iy0)

4,

B = −d2(x0 + iy0)− 2x0
3 − 6ix0

2y0 + 6x0y0
2 + 2iy0

3,

B′ = c2(−ix0 + y0)− 2ix0
3 − 6x0

2y0 − 6ix0y0
2 + 2y0

3,

and
C = c2 − d2 − 4(x0 + iy0)

2.

In order for this line to be tangent to the curve, it must meet it at exactly one
point (that is, a double point). The condition for that to be the case is that A = 0
or

(8) c2(x0 + iy0)
2
(
d2 + (x0 + iy0)

2
)

= d2(x0 + iy0)
4.

This is the condition that x0 and y0 must satisfy in order for the line through P
with slope i to be tangent to the curve.

Similarly, the condition that x0 and y0 must satisfy in order for the line through
P with slope −i to be tangent to the curve is

(9) c2(x0 − iy0)2
(
d2 + (x0 − iy0)2

)
= d2(x0 − iy0)4.

To find points where both conditions are satisfied, we solve Equations (8) and (9)
for x0 and y0. Discarding imaginary solutions, we find three possible values for
P , namely

(0, 0), and

(
0,± cd√

c2 − d2

)
.

The point (0, 0) is a singular point of the curve and is not normally considered to
be a focus. In fact, (0, 0) is the center of the curve.
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We thus have the following theorem.

Theorem 21. A hippopede has center at the origin and major axis XY along
the x-axis. Then the coordinates of the foci of the hippopede are at (0,±f) where
f = cd/

√
c2 − d2. These are labeled J and K in Figure 24.

Figure 24. Foci of a hippopede

None of the usual books of special plane curves talk about the foci of a hippopede.
We will now give some geometrical properties of these foci.

Theorem 22. A hippopede has center O, foci J and K, vertices X and Y , and
covertices U and V . The ellipse with axes XY and UV has foci F and G as shown
in Figure 25. Then JY ‖ UG.

Figure 25. red lines are parallel

Proof. Note that OY = c, OU = d, and OJ = cd/
√
c2 − d2. The semi axes of

the ellipse are c and d. It is a well-known property of ellipses that UG = OY .
Therefore OG =

√
c2 − d2 and consequently, OG · OJ = cd = OU · OY . Hence,

OJ/OU = OY/OG which makes JY ‖ UG. �
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Construction fociOfHippopede.
Given: Hippopede H with center O, vertex Y , and covertex U .
Constructs: the foci J and K of the hippopede.

1. E = ellipseOAB(O, Y, U).
2. {F,G} = U(OY ) ∩XY .
3. J = parallel(Y,GU) ∩ UV .
4. K = reflect(J,O).

Since the inverse of a hippopede about a concentric circle is an ellipse, we can find
geometrical properties of a hippopede by finding geometrical properties of this
ellipse and then inverting them back to give a property of the original hippopede.
Also, according to [6, p. 74], the inverses of the foci of a curve are the foci of the
inverse curve.

So, for example, if we consider the optical property of an ellipse (the lines from a
point on the ellipse to the foci make equal angles with the normal at that point),
we get the following result by inversion. Recall that inversion preserves angles
and tangency and the inverse of a line not through the center of inversion is a
circle through the center of inversion.

Theorem 23. Let P be a point on a hippopede with center O and foci J and K.
The circle that is tangent to the hippopede at P and passes through O has center
OP . Let OJ be the center of �OPJ and let OK be the center of �OPK as shown
in Figure 26. Then ∠OJPOP = ∠OPPOK.

Figure 26. yellow angle = green angle
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The following result was also found by inversion.

Theorem 24. Let P be any point on a hippopede with center O, foci J and K,
and vertices X and Y . The circle �PJK meets XY at Q as shown in Figure 27.
Then �POQ is tangent to the hippopede at P .

Figure 27. brown circle is tangent to hippopede

Proof. An inversion shows that the property is true by result 10.3.1 in [12]. �

The following result was found by inversion.

Theorem 25. A hippopede has center O, foci J and K, and vertices X and Y .
The circle with diameter OJ meets the hippopede at P as shown in Figure 28. Let
Q be the point on segment OY such that OQ = d. Then �POQ is tangent to the
hippopede at P .

Figure 28. brown circle is tangent to hippopede

Proof. An inversion shows that the property is true by result 9.1.5 in [12]. �
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Theorem 26. A hippopede has center O, foci J and K, and vertices X and Y .
The circle with diameter OJ meets the hippopede at P as shown in Figure 29. Let
Q be the point on segment OY such that OQ = d. Let �POQ meet OU at R.
Then ∠JQU = ∠UQR.

Figure 29. yellow angle = green angle

Proof. An inversion shows that the property is true by result 9.1.6 in [12]. �

The following result was found by computer.

Theorem 27. A hippopede with center O has foci J and K. A tangent from J
touches the hippopede at P as shown in Figure 30. Then ∠JPK = 2∠POJ .

Figure 30. yellow angle is twice green angle

Open Question 1. Is there a simple geometric proof for Theorem 27?
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The following result was found by computer.

Theorem 28. A hippopede has foci J and K. A secant through J meets the
hippopede at four points A, B, C, and D as shown in Figure 31. Then KA+KB =
KC +KD.

Figure 31. sum of red lengths = sum of green lengths

Open Question 2. Is there a simple geometric proof for Theorem 28?
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