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Abstract. Let E be a point in the plane of a convex quadrilateral ABCD.
The lines from E to the vertices of the quadrilateral form four triangles. If we
locate a triangle center in each of these triangles, the four triangle centers form
another quadrilateral called a central quadrilateral. For each of various shaped
quadrilaterals, and each of 1000 different triangle centers, and for various choices
for E, we examine the shape of the central quadrilateral. Using a computer, we
determine when the central quadrilateral has a special shape, such as being a
rhombus or a cyclic quadrilateral. A typical result is the following. Let E be the
centroid of equidiagonal quadrilateral ABCD. Let F , G, H, and I be the X591-
points of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively. Then
FGHI is an orthodiagonal quadrilateral.
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1. Introduction

In this study, ABCD always represents a convex quadrilateral known as the ref-
erence quadrilateral. A point E in the plane of the quadrilateral (not on the
boundary) is chosen and will be called the radiator. The radiator can be an arbi-
trary point or it can be a notable point associated with the quadrilateral. Lines
are drawn from the radiator to the vertices of the reference quadrilateral forming
four triangles with the sides of the quadrilateral as shown in Figure 1. These
triangles will be called the radial triangles.

Figure 1. Radial Triangles

In the figure, the radial triangles have been numbered in a counterclockwise order
starting with side AB: 4ABE, 4BCE, 4CDE, 4DAE. Triangle centers (such
as the incenter, centroid, or circumcenter) are selected in each triangle. The same
type of triangle center is used with each radial triangle. In order, the names of
these points are F , G, H, and I as shown in Figure 2. These four centers form a
quadrilateral FGHI that will be called the central quadrilateral (of quadrilateral
ABCD with respect to E). Quadrilateral FGHI need not be convex.

Figure 2. Central Quadrilateral

The purpose of this paper is to determine when a central quadrilateral has a
special shape, such as being a rhombus or a cyclic quadrilateral.
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2. Types of Quadrilaterals Studied

We are only interested in reference quadrilaterals that have a certain amount
of symmetry. For example, we excluded bilateral quadrilaterals (those with two
equal sides), bisect-diagonal quadrilaterals (where one diagonal bisects another),
right kites, right trapezoids, and golden rectangles. The types of quadrilaterals
we studied are shown in Table 1. The sides of the quadrilateral, in order, have
lengths a, b, c, and d. The diagonals have lengths p and q. The measures of the
angles of the quadrilateral, in order, are A, B, C, and D.

Table 1.

Types of Quadrilaterals Considered
Quadrilateral Type Geometric Definition Algebraic Condition
general convex none
cyclic has a circumcircle A + C = B + D
tangential has an incircle a + c = b + d
extangential has an excircle a + b = c + d
parallelogram opposite sides parallel a = c, b = d
equalProdOpp product of opposite sides equal ac = bd
equalProdAdj product of adjacent sides equal ab = cd
orthodiagonal diagonals are perpendicular a2 + c2 = b2 + d2

equidiagonal diagonals have the same length p = q
Pythagorean equal sum of squares, adjacent sides a2 + b2 = c2 + d2

kite two pair adjacent equal sides a = b, c = d
trapezoid one pair of opposite sides parallel A + B = C + D
rhombus equilateral a = b = c = d
rectangle equiangular A = B = C = D
Hjelmslev two opposite right angles A = C = 90◦

isosceles trapezoid trapezoid with two equal sides A = B, C = D
APquad sides in arithmetic progression d− c = c− b = b− a

The following combinations of entries in the above list were also considered: bicen-
tric quadrilaterals (cyclic and tangential), exbicentric quadrilaterals (cyclic and
extangential), bicentric trapezoids, cyclic orthodiagonal quadrilaterals, equidiag-
onal kites, equidiagonal orthodiagonal quadrilaterals, equidiagonal orthodiago-
nal trapezoids, harmonic quadrilaterals (cyclic and equalProdOpp), orthodiagonal
trapezoids, tangential trapezoids, and squares (equiangular rhombi).

So, in addition to the general convex quadrilateral, a total of 28 types of quadri-
laterals were considered in this study.

A graph of the types of quadrilaterals considered is shown in Figure 3. An arrow
from A to B means that any quadrilateral of type B is also of type A. For example:
all squares are rectangles and all kites are orthodiagonal. If a directed path leads
from a quadrilateral of type A to a quadrilateral of type B, then we will say that
A is an ancestor of B. For example, an equidiagonal quadrilateral is an ancestor
of a rectangle. In other words, all rectangles are equidiagonal.

Unless otherwise specified, when we give a theorem about a quadrilateral, we will
omit an entry for a particular shape quadrilateral if the property is known to be
true for an ancestor of that quadrilateral.

We do not include results where the central quadrilateral degenerates to a line
segment or a point.
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Figure 3. Quadrilateral Shapes

3. Methodology

In this study, we locate triangle centers in the four radial triangles. We use Clark
Kimberling’s definition of a triangle center [7]. More details can be found in
section 3 of [10].

We used a computer program called GeometricExplorer to examine the shape
of the central quadrilateral. Starting with each type of quadrilateral listed in
Figure 3 for the reference quadrilateral, we picked various choices for point E, the
radiator. The types of radiators studied are shown in Table 2.

Table 2.

Points Used as Radiators
name description
arbitrary point any point in the plane of ABCD
diagonal point intersection of the diagonals (QG–P1)
Poncelet point (QA–P2)
Steiner point (QA–P3)
vertex centroid (QA-P1)
area centroid (QG-P4)

A code in parentheses represents the name for the point as listed in the Encyclo-
pedia of Quadri-Figures [12].

For each n from 1 to 1000, we placed center Xn in each of the radial triangles of
the reference quadrilateral. The program then analyzes the central quadrilateral
formed by these four centers and reports if the central quadrilateral has a spe-
cial shape. Points at infinity were omitted. GeometricExplorer uses numerical
coordinates (to 15 digits of precision) for locating all the points. This does not
constitute a proof that the result is correct, but gives us compelling evidence for
the validity of the result.
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If a theorem in this paper is accompanied by a figure, this means that the figure
was drawn using either Geometer’s Sketchpad or GeoGebra. In either case, we
used the drawing program to dynamically vary the points in the figure. Noticing
that the result remains true as the points vary offers further evidence that the
theorem is true.

To prove the results that we have discovered, we use geometric methods, when
possible. If we could not find a purely geometrical proof, we turned to analytic
methods using barycentric coordinates and performing exact symbolic computa-
tion using Mathematica. All proofs can be found in the Mathematica notebooks
included in the supplementary material associated with the paper.

If our only “proof” of a particular relationship is by using numerical calculations
(and not using exact computation), then we have colored the center red in the
table of relationships.
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4. Results Using an Arbitrary Point

In this configuration, the radiator, E, is any point in the plane of the reference
quadrilateral ABCD, not on the boundary.

Our computer analysis found only one special shape associated with all quadri-
laterals when E is an arbitrary point in the plane. We examined all the types
of quadrilaterals listed in Table 1 and all triangle centers from X1 to X1000. The
special shape occurs only when the chosen center is X2, the centroid. The result
is shown below.

Central Quadrilateral of a General Quadrilateral
Shape of central quadrilateral center

parallelogram 2

Theorem 4.1. Let E be an arbitrary point in the plane of convex quadrilateral
ABCD. Let F , G, H, and I be the centroids of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively (Figure 4). Then FGHI is a parallelogram.
The sides of the parallelogram are parallel to the diagonals of ABCD.

Figure 4. General quadrilateral: centroids =⇒ parallelogram

A geometric proof is straightforward. We start with a lemma.

Lemma 4.2. Let E be an arbitrary point in the plane of 4ABC. Let F be the
centroid of triangle 4ABE and let G be the centroid of 4ACE(Figure 5). Then
FG ‖ BC and FG = BC/3.

Figure 5.
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Proof. Let AP and AQ be the medians of triangles AEB and AEC, respectively
(Figure 6). Then AF/FP = 2 and AG/GQ = 2 which implies FG ‖ PQ and
FG = 2

3
PQ. Since P and Q are the midpoints of EB and EC, respectively, we

have BP/PE = 1 and CQ/QE = 1 which implies that PQ ‖ BC and PQ =
BC/2. Thus, FG ‖ BC and FG = 2

3
PQ = 2

3
(1
2
BC) = 1

3
BC.

Figure 6.

�

Now on to the proof of Theorem 4.1. Refer back to Figure 4.

Proof. By Lemma 4.2, FI ‖ BD. Similarly, GH ‖ BD. Thus, FI ‖ GH. In the
same way, FG ‖ IH. Hence, FGHI is a parallelogram. �

Our computer study found special shapes associated with equidiagonal and or-
thodiagonal quadrilaterals. The results are shown in the following three tables.

Central Quadrilateral of an Equidiagonal Quadrilateral
Shape of central quadrilateral center

rhombus 2

Theorem 4.3. Let E be an arbitrary point in the plane of equidiagonal quadrilat-
eral ABCD. Let F , G, H, and I be the centroids of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively (Figure 4). Then FGHI is a rhombus.

Proof. By Lemma 4.2, FI = 1
3
BD and FG = 1

3
AC = 1

3
BD, so FI = FG. But a

parallelogram with two equal adjacent sides is a rhombus. �

Central Quadrilateral of an Orthodiagonal Quadrilateral
Shape of central quadrilateral center

rectangle 2

Theorem 4.4. Let E be an arbitrary point in the plane of orthodiagonal quadri-
lateral ABCD. Let F , G, H, and I be the centroids of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively (Figure 4). Then FGHI is a rectangle.

Proof. By Lemma 4.2, FI ‖ BD and FG ‖ AC. Since BD ⊥ AC, we can conclude
that FI ⊥ FG. But a parallelogram with two perpendicular adjacent sides is a
rectangle. �
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Central Quadr of an Equidiagonal Orthodiagonal Quadr
Shape of central quadrilateral center

square 2

Theorem 4.5. Let E be an arbitrary point in the plane of equidiagonal ortho-
diagonal quadrilateral ABCD. Let F , G, H, and I be the centroids of triangles
4ABE, 4BCE, 4CDE, and 4DAE, respectively (Figure 4). Then FGHI is
a square.

Proof. By Theorem 4.3, FGHI is a rhombus. By Theorem 4.4, FGHI is a rec-
tangle. But a figure that is both a rhombus and a rectangle must be a square. �

Open Question 1. Is the centroid the only triangle center for which the central
quadrilateral is a parallelogram?

Our computer study found several interesting results for the central quadrilateral
of a rectangle. These are shown in the following table.

The symbol S denotes the set of all triangle centers that lie on the Euler line
of the reference triangle and have constant Shinagawa coefficients. Shinagawa
coefficients are defined in [4]. The first few n for which Xn has constant Shinagawa
coefficients are n =2, 3, 4, 5, 20, 140, 376, 381, 382, 546-550, 631, and 632.

Central Quadrilaterals of Rectangles
Shape of central quad centers

orthodiagonal S
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Theorem 4.6. Let E be an arbitrary point in the plane of rectangle ABCD. Let
X be a triangle center with constant Shinagawa coefficients. Let F , G, H, and I
be the X-points of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively.
Then FGHI is orthodiagonal. The diagonals of FGHI are parallel to the sides
of ABCD. Figure 7 shows the case when X is the de Longchamps Point (X20).
Figure 8 shows the case when X is the X381 point.

Figure 7. rectangle, X20-points =⇒ orthodiagonal

Figure 8. rectangle, X381-points =⇒ orthodiagonal
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Our computer study found several interesting results for the central quadrilateral
of a square. These are shown in the following table. Results that are true for
rectangles or equidiagonal orthodiagonal quadrilaterals are omitted.

Central Quadrilaterals of Squares
Shape of central quad centers

square 2

cyclic 99, 925

equidiagonal orthodiagonal 372, 373, 640

Theorem 4.7. Let E be an arbitrary point in the plane of square ABCD. Let F ,
G, H, and I be the centroids of triangles 4ABE, 4BCE, 4CDE, and 4DAE,
respectively (Figure 9). Then FGHI is a square.

Figure 9. square, X2-points =⇒ square

Proof. This is Theorem 6.2 in [10]. �

Theorem 4.8. Let E be an arbitrary point in the plane of square ABCD. Let n
be 99 or 925. Let F , G, H, and I be the Xn-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively. Then FGHI is cyclic and E lies on the circle
FGHI. (Figure 10 shows the case when n = 99.)

Figure 10. square, X99-points =⇒ cyclic
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Theorem 4.9. Let E be an arbitrary point in the plane of square ABCD. Let n
be 372 or 640. Let F , G, H, and I be the Xn-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively (Figure 11 shows the case when n = 372). Then
FGHI is an equidiagonal orthodiagonal quadrilateral. The diagonals of FGHI
are parallel to the sides of ABCD.

Figure 11. square, X372-points =⇒ equi-ortho

Theorem 4.10. Let E be an arbitrary point in the plane of square ABCD. Let
F , G, H, and I be the X373-points of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively (Figure 12). Then FGHI is an equidiagonal orthodiagonal
quadrilateral. (Note: The diagonals of FGHI are not necessarily parallel to the
sides of ABCD.)

Figure 12. square, X373-points =⇒ equi-ortho

5. Point E Restricted to a Line

In the previous section, point E could be any point in the plane. If point E is
restricted to be located on certain lines associated with the quadrilateral, then
some interesting results are obtained. They are shown in the following two tables.

Central Quadrilaterals of Kites
Shape of central quad centers

isosceles trapezoid all
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Theorem 5.1. Let E be any point on diagonal AC of kite ABCD (with AB =
AD). Let X be any triangle center. Let F , G, H, and I be the X-points of
triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively (Figure 13). Then
FGHI is an isosceles trapezoid.

Figure 13. kite, X-points =⇒ isosceles trapezoid

Proof. Since 4AED is the reflection of 4AEB about AE, then I is the reflection
of F about AE. In particular, FI ⊥ AE. Similarly, GH ⊥ AE. Therefore
FI ‖ GH, so FGHI is a trapezoid. Furthermore, IH is the reflection of FG
about AC, so IH = FG. Hence, FGHI is an isosceles trapezoid. �

Central Quadrilaterals of Isosceles Trapezoids
Shape of central quad centers

kite all

Theorem 5.2. Let E be any point on the perpendicular bisector of side BC of
isosceles trapezoid ABCD (with AD ‖ BC and AB = CD). Let X be any triangle
center. Let F , G, H, and I be the X-points of triangles 4ABE, 4BCE, 4CDE,
and 4DAE, respectively (Figure 14). Then FGHI is a kite.

Figure 14. isosceles trapezoid, X-points =⇒ kite

Proof. Let m be the perpendicular bisector of BC. Since 4DCE is the reflection
of 4ABE about m, then H is the reflection of F about m. Hence FH ⊥ m.
Since 4BEC is isosceles, G lies on m. Since 4AED is isosceles, I lies on m.
Therefore, IG coincides with m, and hence IG ⊥ FH. Moreover, IG bisects FH
because H is the reflection of F about m. Therefore, FGHI is a kite. �
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6. Results Using the Vertex Centroid

A bimedian of a quadrilateral is the line segment joining the midpoints of two
opposite sides.

The centroid (or vertex centroid) of a quadrilateral is the point of intersection of
the bimedians (Figure 15). The centroid bisects each bimedian.

Figure 15. Centroid of a quadrilateral

In this section, we study the case where point E is the centroid of the quadrilateral.
Results that are true when point E is arbitrary are omitted.

Our computer study found a unique shape for the central quadrilateral of an
equidiagonal quadrilateral. The result is shown in the following table.

Central Quadrilaterals of Equidiagonal Quads
Shape of central quad centers

orthodiagonal 591

Theorem 6.1. Let E be the vertex centroid of equidiagonal quadrilateral ABCD.
Let F , G, H, and I be the X591-points of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively (Figure 16). Then FGHI is an orthodiagonal quadrilateral.

Figure 16. equidiagonal quadrilateral, X591-points =⇒ orthodiagonal
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Our computer study found additional results if quadrilateral ABCD is also or-
thodiagonal. The results are shown in the following table.

Central Quads of Equidiagonal Orthodiagonal Quads
Shape of central quad centers

parallelogram 491, 615

Theorem 6.2. Let E be the vertex centroid of equidiagonal orthodiagonal quadri-
lateral ABCD. Let n be 491 or 615. Let F , G, H, and I be the Xn-points of
triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively. Then FGHI is a
parallelogram. (Figure 17 shows the case when n = 491.)

Figure 17. equidiagonal orthodiagonal quad, X491-points =⇒ parallelogram
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7. Results Using the Steiner Point

A midray circle of a quadrilateral is the circle through the midpoints of the line
segments joining one vertex of the quadrilateral to the other vertices.

The Steiner point (sometimes called the Gergonne-Steiner point) of a quadrilateral
is the common point of the midray circles of the quadrilateral.

Figure 18. Steiner point of quadrilateral ABCD

Figure 18 shows the Steiner point of quadrilateral ABCD. The yellow points
represent the midpoints of the sides and diagonals of the quadrilateral. The blue
circles are the midray circles. The common point of the four circles is the Steiner
point (shown in green).

In this section, we study the case where point E is the Steiner point of the quadri-
lateral. Results that are true when point E is arbitrary are omitted. Before stating
the results, we give some lemmas and definitions.

Proposition 7.1. The Steiner point of a cyclic quadrilateral is the circumcenter
of the quadrilateral.

Proof. This is Proposition 10.2 of [10]. �

The following lemma comes from [13].

Lemma 7.2. The center Xn of 4ABC lies on the circumcircle of 4ABC for the
following values of n:

74, 98–112, 476, 477, 675, 681, 689, 691, 697, 699, 701, 703, 705, 707, 709, 711,
713, 715, 717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, 743, 745,
747, 753, 755, 759, 761, 767, 769, 773, 777, 779, 781, 783, 785, 787, 789, 791, 793,
795, 797, 803, 805, 807, 809, 813, 815, 817, 819, 825, 827, 831, 833, 835, 839–843,
898, 901, 907, 915, 917, 919, 925, 927, 929–935, 953, 972.

The following two lemmas comes from [10].

Lemma 7.3. Let ABC be an isosceles triangle with AB = AC. Then the center
Xn coincides with A for the following values of n:

59, 99, 100, 101, 107, 108, 109, 110, 112, 162, 163, 190, 249, 250, 476, 643, 644,
645, 646, 648, 651, 653, 655, 658, 660, 662, 664, 666, 668, 670, 677, 681, 685, 687,
689, 691, 692, 765, 769, 771, 773, 777, 779, 781, 783, 785, 787, 789, 791, 793, 795,
797, 799, 803, 805, 807, 809, 811, 813, 815, 817, 819, 823, 825, 827, 831, 833, 835,
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839, 874, 877, 880, 883, 886, 889, 892, 898, 901, 906, 907, 919, 925, 927, 929,
930, 931, 932, 933, 934, 935.

Lemma 7.4. Let ABC be an isosceles triangle with AB = AC. Let M be the
midpoint of BC. Then the center Xn coincides with M for the following values
of n:

11, 115, 116, 122–125, 127, 130, 134–137, 139, 244–247, 338, 339, 865-868.

The symbol M denotes these points.

Lemma 7.5. Let ABC be an isosceles triangle with AB = AC. Let P be the
antipode of point A with respect to the circumcircle of 4ABC. Then the center
Xn coincides with P for the following values of n:

74, 98, 102–106, 111, 477, 675, 697, 699, 701, 703, 705, 707, 709, 711, 713, 715,
717, 719, 721, 723, 725, 727, 729, 731, 733, 735, 737, 739, 741, 743, 745, 747, 753,
755, 759, 761, 767, 840–843, 915, 917, 953, 972.

Proof. This follows from Lemmas 7.2 and 7.3. �

The symbol T denotes these points.

Our computer study found several results for the central quadrilateral of cyclic
quadrilaterals. They are shown in the following table.

Central Quadrilaterals of Cyclic Quadrilaterals
Shape of central quad centers

parallelogram M, 148–150, 290, 402, 620, 671, 903

tangential T, 3, 399

Theorem 7.6. Let E be the Steiner point of cyclic quadrilateral ABCD. Let n
be 3 or 399. Let F , G, H, and I be the Xn-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively. (Figure 19 shows the case when n = 3.) Then
FGHI is tangential with incenter E. The incircle of FGHI is concentric with
the circumcircle of ABCD and the inradius of FGHI is half the circumradius of
ABCD.

Figure 19. cyclic, X3-points =⇒ tangential
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For the case n = 3, we can give a purely geometrical proof.

Proof. By Proposition 7.1, E is the circumcenter of quadrilateral ABCD. The
points F , G, H, I are the circumcenters of triangles 4ABE, 4BCE, 4CDE,
and 4DAE, respectively. Line AE is the radical axis of of circles (AEB) and
(AED). Let X = AE ∩ FI. Clearly we have AE ⊥ FI and EX = AE/2. Define
Y , Z, and W similarly (Figure 20). Similarly we have BE ⊥ FG, CE ⊥ GH,

Figure 20. case when n = 3

and DE ⊥ HI, and EY = EB/2, and EZ = EC/2, and EW = ED/2. Since
EA = EB = EC = ED, we have EX = EY = EZ = EW , so E is the incenter
of quadrilateral FGHI. Therefore FGHI is a tangential quadrilateral. �

Theorem 7.7. Let E be the Steiner point of cyclic quadrilateral ABCD. Let Xn ∈
T. Let F , G, H, and I be the Xn-points of triangles 4ABE, 4BCE, 4CDE,
and 4DAE, respectively (Figure 21). Then FGHI is a tangential quadrilateral
with incenter E. The incircle of FGHI coincides with the circumcircle of ABCD.

Figure 21. cyclic, Xn ∈ T =⇒ FGHI tangential

Proof. By Proposition 7.1, E is the circumcenter of quadrilateral ABCD. Since
EA = EB, 4EAB is isosceles with vertex E, so F is the antipode of E with
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respect to the circumcircle of 4EAB by Lemma 7.5. Therefore, ∠FAE = 90◦.
Similarly, ∠IAE = 90◦. Hence I, A, and F are collinear and EA ⊥ FI. Similarly,
EB ⊥ FG, EC ⊥ GH, and ED ⊥ HI. Since EA = EB = EC = ED, it follows
that FGHI is a tangential quadrilateral and the incenter of FGHI coincides with
E. �

Theorem 7.8. Let E be the Steiner point of cyclic quadrilateral ABCD. Let n
be 11, 115, 116, 122-125, 127, 130, 134–137, 139, 148–150, 244–247, 290, 338,
339, 402, 620, 671, 865–868, or 903. Let F , G, H, and I be the Xn-points of
triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively. Then FGHI is a
parallelogram.

Proof. If n is 11, 115, 116, 122–125, 127, 130, 134–137, 139, 244–247, 338, 339,
865–868, the result is true by the proof of Theorem 9.3 of [10].

If n is 402 or 620, the result is true by the proof of Theorem 9.2 of [10].

If n is 290, 671, or 903, the result is true by the proof of Theorem 9.8 of [10].

If n is 148, 149, or 150, the result is true by the proof of Theorem 9.9 of [10].

The proofs in [10] show that the central quadrilateral is homothetic to a parallel-
ogram associated with the reference quadrilateral.

This covers all the cases. �

The following proposition is useful when giving geometric proofs of results involv-
ing the Steiner point of an orthodiagonal quadrilateral.

Proposition 7.9. The Steiner point of an orthodiagonal quadrilateral coincides
with the point of intersection of the perpendicular bisectors of the diagonals.

Figure 22. Steiner point of an orthodiagonal quadrilateral

Proof. This is Proposition 10.4 of [10]. �
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We found some results for an orthodiagonal quadrilateral. They are shown in the
following table.

Central Quads of an Orthodiagonal Quadrilateral
Shape of central quad centers

cyclic 3

trapezoid 4

Theorem 7.10. Let E be the Steiner point of orthodiagonal quadrilateral ABCD.
Let F , G, H, and I be the circumcenters of triangles 4ABE, 4BCE, 4CDE,
and 4DAE, respectively (Figure 23). Then FGHI is a cyclic quadrilateral.

Figure 23. orthodiagonal quadrilateral, X3-points =⇒ cyclic

Open Question 2. Is there a purely geometric proof of Theorem 7.10?

Open Question 3. If the central quadrilateral is cyclic, must the center be the
circumcenter?

Theorem 7.11. Let E be the Steiner point of orthodiagonal quadrilateral ABCD.
Let F , G, H, and I be the orthocenters of triangles 4ABE, 4BCE, 4CDE,
and 4DAE, respectively (Figure 23). Then FHIG is a trapezoid with FH ‖ GI.

Figure 24. orthodiagonal quadrilateral, X4-points =⇒ FH ‖ GI
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Open Question 4. Is there a purely geometric proof of Theorem 7.11?

Open Question 5. If the central quadrilateral is a trapezoid, must the center be
the orthocenter?

Our computer study found some additional results for an equidiagonal orthodiag-
onal quadrilateral. They are shown in the following table.

Central Quads of Equidiagonal Orthodiagonal Quads
Shape of central quad centers

orthodiagonal 486, 487, 642

Theorem 7.12. Let E be the Steiner point of equidiagonal orthodiagonal quadri-
lateral ABCD. Let n be 486, 487, or 642. Let F , G, H, and I be the Xn-points
of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively. Figure 25 shows
an example using the inner Vecten points (n = 486). Figure 26 shows an example
when n = 642. Then FGHI is an orthodiagonal quadrilateral. When n = 486,
the diagonals of FGHI meet at point E.

Figure 25. equi-ortho-quad, X486-points =⇒ orthodiagonal

Figure 26. equi-ortho-quad, X642-points =⇒ orthodiagonal
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Our computer study found some additional results for bicentric quadrilaterals.
They are shown in the following table.

Central Quads of Bicentric Quadrilaterals
Shape of central quad centers

cyclic 1, 165, 214

Theorem 7.13. Let E be the Steiner point of bicentric quadrilateral ABCD.
Let F , G, H, and I be the incenters of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively (Figure 27). Then FGHI is a cyclic quadrilateral.

Figure 27. bicentric quadrilateral, X1-points =⇒ cyclic

For more information about this result, see [2], [3], and [8]. A purely geometric
proof can be found in [14].

Lemma 7.14. The X214-point of a triangle is the midpoint of X1 and X100.

Proof. See [6]. �
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Theorem 7.15. Let E be the Steiner point of bicentric quadrilateral ABCD. Let
F , G, H, and I be the X214-points of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then FGHI is a cyclic quadrilateral.

Figure 28. bicentric quadrilateral, X214-points =⇒ cyclic

Proof. Let F ′, G′, H ′, and I ′ be the X1-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively.
Let F be the midpoint of EF ′.
Proposition 7.1 =⇒ E is the circumcenter of ABCD.
EA = EB =⇒ EAB isosceles triangle =⇒ F ′ lies on median to base, AB.
Lemma 7.3 =⇒ E is the X100-point of 4EAB.
Lemma 7.14 =⇒ F is the X214-point of triangle 4EAB.
A dilation of 1

2
about E maps F ′ to F .

Similarly, this dilation maps F ′G′H ′I ′ to FGHI.
Theorem 7.13 =⇒ F ′G′H ′I ′ is cyclic.
Thus, FGHI is homothetic to F ′G′H ′I ′ and is therefore also cyclic. �

Lemma 7.16. The X165-point of a triangle lies on the line X1X3 and X1X3 =
3X3X165.

Proof. From [5], we have that X165 lies on the line X1X3. Using the barycentric
coordinates for X1, X3, and X165 along with the distance formula between two
points, we find that

X1X3
2

= −abc (a3 − a2b− a2c− ab2 + 3abc− ac2 + b3 − b2c− bc2 + c3)

(a− b− c)(a + b− c)(a− b + c)(a + b + c)

and

X3X165
2

= −abc (a3 − a2b− a2c− ab2 + 3abc− ac2 + b3 − b2c− bc2 + c3)

9(a− b− c)(a + b− c)(a− b + c)(a + b + c)
.

Thus, (
X1X3

X3X165

)2

= 9

and we are done. �

Theorem 7.17. Let E be the Steiner point of bicentric quadrilateral ABCD. Let
F , G, H, and I be the X165-points of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then FGHI is a cyclic quadrilateral.
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Figure 29. bicentric quadrilateral, X165-points =⇒ cyclic

Proof. Let F ′, G′, H ′, and I ′ be the X1-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively.
Proposition 7.1 =⇒ E is the circumcenter of ABCD.
EA = EB =⇒ EAB isosceles triangle.
Lemma 7.16 =⇒ F lies on EF ′ and EF = 3EF ′.
A dilation of 3 : 1 with center E maps F ′ to F .
Similarly, this dilation maps F ′G′H ′I ′ to FGHI.
Theorem 7.13 =⇒ F ′G′H ′I ′ is cyclic.
Thus, FGHI is homothetic to F ′G′H ′I ′ and is therefore also cyclic. �

Our computer study found a number of results for a cyclic orthodiagonal quadri-
lateral. They are shown in the following table.

Central Quads of Cyclic Orthodiagonal Quadrilaterals
Shape of central quad centers

rectangle M, 2, 148–150, 402, 620, 671, 903

bicentric T, 3, 399

equidiagonal 13, 14, 616–619

isosceles trapezoid 154

trapezoid 26, 139, 155–157

Theorem 7.18. Let E be the Steiner point of cyclic orthodiagonal quadrilateral
ABCD. Let n be 2, 11, 115, 116, 122-125, 127, 130, 134–137, 139, 148–150,
244–247, 290, 338, 339, 402, 620, 671, 865–868, or 903. Let F , G, H, and I
be the Xn-points of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively.
Then FGHI is a rectangle. Moreover, if n =148, 149, or 150, then FGHI and
ABCD have the same diagonal point.

Theorem 7.19. Let E be the Steiner point of cyclic orthodiagonal quadrilateral
ABCD. Let F , G, H, and I be the X154-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively. Then FGHI is an isosceles trapezoid.

Theorem 7.20. Let E be the Steiner point of cyclic orthodiagonal quadrilateral
ABCD. Let n be 26, 139, 155, 156, or 157. Let F , G, H, and I be the Xn-points
of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively. Then FGHI is
a trapezoid.
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Theorem 7.21. Let E be the Steiner point (circumcenter) of cyclic orthodiago-
nal quadrilateral ABCD. Let F , G, H, and I be the circumcenters of triangles
4ABE, 4BCE, 4CDE, and 4DAE, respectively (Figure 30). Then FGHI is
a bicentric quadrilateral with incenter E.

Figure 30. cyclic orthodiagonal quadrilateral, X3-points =⇒ bicentric

Proof. Since ABCD is cyclic, FGHI is tangential by Theorem 7.6. Since ABCD
is orthodiagonal, FGHI is cyclic by Theorem 7.10. Thus, FGHI is bicentric. �

Open Question 6. Is there a purely geometric proof of Theorem 7.21?

Theorem 7.22. Let E be the Steiner point of a cyclic orthodiagonal quadrilateral
ABCD. Let n be 13, 14, 616, 617, 618, or 619. Let F , G, H, and I be the Xn-
points of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively (Figure 31
shows the case when n = 14). Then FGHI is equidiagonal.

Figure 31. cyclic orthodiagonal quad, X14-points =⇒ FH = GI

Note: In Figure 31, FH is not perpendicular to GI.

Open Question 7. Is there a purely geometric proof of Theorem 7.22 for the
cases where n is 13 or 14?
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Our computer study found a number of results for Equidiagonal Orhodiagonal
Trapezoids. They are shown in the following table.

Central Quads of Equidiagonal Orthodiagonal Trapezoids
Shape of central quad centers

square M, 2, 148–150, 290, 402, 620, 671, 903

equidiagonal kite 13, 14, 616–618

right kite T, 3, 399

Note: An Equidiagonal Orthodiagonal Trapezoid is an isosceles trapezoid and is
cyclic. As an isosceles trapezoid, the central quadrilateral is always a kite.

Theorem 7.23. Let E be the Steiner point of an equidiagonal orthodiagonal trape-
zoid ABCD. Let n be 13, 14, 616, 617, or 618. Let F , G, H, and I be the Xn-
points of triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively (Figure 32
shows the case when n = 14). Then FGHI is an equidiagonal kite.

Figure 32. equi ortho trap, X14-points =⇒ equidiagonal kite

Proof. Quadrilateral FGHI is a kite by Theorem 5.2. Quadrilateral FGHI is
equidiagonal by Theorem 7.22. Thus FGHI is an equidiagonal kite. �

Theorem 7.24. Let E be the Steiner point of an equidiagonal orthodiagonal trape-
zoid ABCD. Let n be 3 or 399 or in T. Let F , G, H, and I be the Xn-points of
triangles 4ABE, 4BCE, 4CDE, and 4DAE, respectively. Then FGHI is a
right kite.
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Our computer study also found some results for Equidiagonal Kites. They are
shown in the following table.

Central Quads of Equidiagonal Kites
Shape of central quad centers

square 486, 642

rectangle 586

Theorem 7.25. Let E be the Steiner point of an equidiagonal kite ABCD. Let n
be 486 or 642. Let F , G, H, and I be the Xn-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively. Then FGHI is a square.

Proof. The case n = 486 follows from Theorem 10.9 of [10].
The case n = 642 follows from Theorem 10.7 of [10]. �

Theorem 7.26. Let E be the Steiner point of an equidiagonal kite ABCD. Let
F , G, H, and I be the X586-points of triangles 4ABE, 4BCE, 4CDE, and
4DAE, respectively. Then FGHI is a rectangle.
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8. Results Using the Poncelet Point

The Poncelet point (sometimes called the Euler-Poncelet point) of a quadrilat-
eral is the common point of the nine-point circles of the component triangles
(half-triangles) of the quadrilateral. A triangle formed from three vertices of a
quadrilateral is called a component triangle of that quadrilateral. The nine-point
circle of a triangle is the circle through the midpoints of the sides of that triangle.

Figure 33 shows the Poncelet point of quadrilateral ABCD. The yellow points
represent the midpoints of the sides and diagonals of the quadrilateral. The
component triangles are BCD, ACD, ABD, and ABC. The blue circles are the
nine-point circles of these triangles. The common point of the four circles is the
Poncelet point (shown in green).

Figure 33. The Poncelet point of quadrilateral ABCD

In this section, we study the case where point E is the Poncelet point of the
quadrilateral. Results that are true when point E is arbitrary are omitted.

The following two propositions come from [10].

Proposition 8.1. The Poncelet point of a parallelogram coincides with the diag-
onal point.

Proposition 8.2. The Poncelet point of an orthodiagonal quadrilateral coincides
with the diagonal point.

Because of these propositions, we will not discuss parallelograms or orthodiagonal
quadrilaterals in this section because they have been covered in Section 5 of [11].

Our computer study found a few results when the quadrilateral is not a parallel-
ogram or orthodiagonal. They are shown in the following table.

Central Quads of Hjelmslev Quadrilaterals
Shape of central quad centers

trapezoid 3, 69

tangential trapezoid 4

Lemma 8.3. Let E be the Poncelet point of quadrilateral ABCD that has right
angles at B and D. Then E is the midpoint of BD.

Theorem 8.4. Let E be any point on diagonal BD of quadrilateral ABCD. Let
F , G, H, and I be the X3 points of 4EAB, 4EBC, 4ECD, and 4EDA,
respectively (Figure 34). Then FGHI is a trapezoid with FG ‖ HI.
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Figure 34. E ∈ BD, X3-points, =⇒ FG ‖ HI

Proof. Point F is the circumcenter of 4ABE, so F lies on the perpendicular
bisector of BE. Similarly G lies on the perpendicular bisector of BE. Hence
FG ⊥ BE. Similarly IH ⊥ DE. Since E lies on BD, we have that FG and IH
are perpendicular to BD. Therefore FG ‖ IH. �

Theorem 8.5. Let E be the Poncelet point of a Hjelmslev quadrilateral ABCD.
Let F , G, H, and I be the X3 points of 4EAB, 4EBC, 4ECD, and 4EDA,
respectively. Then FGHI is a trapezoid with FG ‖ HI.

Proof. By Lemma 8.3, E is the midpoint of BD. Then, by Theorem 8.4, FGHI
is a trapezoid with FG ‖ HI. �

Theorem 8.6. Let E be any point on diagonal BD of quadrilateral ABCD. Let
F , G, H, and I be the X4 points of 4EAB, 4EBC, 4ECD, and 4EDA,
respectively (Figure 35). Then FHGI is a trapezoid with FI ‖ HG.

Figure 35. E ∈ BD, X4-points, =⇒ FI ‖ HG

Proof. Point F is the orthocenter of 4ABE, so AF ⊥ BE. Point I is the ortho-
center of 4ADE, so AI ⊥ DE. Since E lies on BD, we have that AF and AI
are both perpendicular to BD. It follows that FI ⊥ BD since F and I lie on the
perpendicular from A to BD. In a similar way, it can be proved that GH ⊥ BD.
Therefore FI ‖ GH. �
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Theorem 8.7. Let E be the Poncelet point of a Hjelmslev quadrilateral ABCD.
Let F , G, H, and I be the X4 points of 4EAB, 4EBC, 4ECD, and 4EDA,
respectively (Figure 36). Then FGHI is a tangential trapezoid with incenter E
and FI ‖ GH. Also, diagonal BD passes through the points of contact of the
incircle with sides GH and FI.

Note that E is the midpoint of BD by Lemma 8.3.

Figure 36. X4-points =⇒ FGHI is a tangential trapezoid

Open Question 8. Is there a purely geometric proof of Theorem 8.7?

Open Question 9. If E is the Poncelet point of a Hjelmslev quadrilateral ABCD,
and the central quadrilateral is a tangential trapezoid, must the center be the or-
thocenter?
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9. Results Using the Area Centroid

The Area Centroid (also called the quasi centroid or 1st QG quasi centroid) of a
convex quadrilateral is the the center of mass of the quadrilateral when its surface
is made of some evenly distributed material.

Geometrically, it is the intersection of the diagonals of the centroid quadrilateral
of the given quadrilateral.

A triangle formed from three vertices of a quadrilateral is called a component
triangle of that quadrilateral.

The quadrilateral whose vertices are the centroids of the four component triangles
of a quadrilateral is called the centroid quadrilateral of that quadrilateral.

Figure 37 shows the area centroid of quadrilateral ABCD. The yellow points rep-
resent the centroids of the component triangles of the quadrilateral. The compo-
nent triangles are BCD, ACD, ABD, and ABC. The blue region is the centroid
quadrilateral GAGBGCGD. The red point is the area centroid.

Figure 37. The area centroid of quadrilateral ABCD

In this section, we study the case where point E is the area centroid of the quadri-
lateral. Results that are true when point E is arbitrary are omitted.

If ABCD is a kite, with AB = AD and CB = CD, then by symmetry, the area
centroid lies on diagonal AC. By Theorem 5.1, the central quadrilateral of ABCD
is an isosceles trapezoid.

Our computer study did not find any new results, other than the ones that are
true when E is an arbitrary point or when the quadrilateral is a kite.

Central Quadrilaterals of all Quadrilaterals
No new relationships were found.
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10. Areas for Future Research

There are many avenues for future investigation.

10.1. Investigate other triangle centers.

In our study, we only investigated triangle centers Xn for n ≤ 1000. Extend this
study to larger values of n.

10.2. Use other shape quadrilaterals.

In our investigation, we only studied 28 shapes of quadrilaterals as shown in
Figure 3. There are many other shapes of quadrilaterals. Study these other
shapes.

For example, we did find some results associated with a right kite when point E
is the area centroid of quadrilateral ABCD. A right kite is a kite in which two
opposite angles are right angles.

Theorem 10.1. Let E be the area centroid of right kite ABCD. Let n be 68,
317, or 577. Let F , G, H, and I be the Xn-points of triangles 4ABE, 4BCE,
4CDE, and 4DAE, respectively. (Figure 38 shows the case where n = 68.)
Then FGHI is a rectangle. The sides of the rectangle are parallel to the diagonals
of the right kite.

Figure 38. Right Kite, X68-points =⇒ rectangle

10.3. Use other quadrilateral centers.

In our study, we only used the common quadrilateral centers listed in Table 2 as
radiators. Additional notable points associated with the reference quadrilateral
could be used, such as the Miquel point (QL-P1), the Morley Point (QL-P2), the
Newton Steiner point (QL-P7), and the various quasi points. A list of notable
points associated with a quadrilateral can be found in [12].
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10.4. Investigate radiators lying on quadrilateral lines.

In Section 5, we studied cases where the radiator was restricted to lie on a certain
line of symmetry of quadrilateral ABCD. We could also look at cases where the
radiator lies on some notable line associated with the reference quadrilateral, such
as a bimedian, the Newton line (QL-L1), the Steiner line (QL-L2), etc., or, in the
case of cyclic quadrilaterals, the Euler line. A list of notable lines associated with
a quadrilateral can be found in [12].

10.5. Ask about uniqueness.

Find an entry in one of our tables where there is only one center giving a particular
relationship for a certain type of quadrilateral. For example, in Section 6, we found
in Theorem 6.1 that for an equidiagonal quadrilateral, when the radiator is the
centroid of the reference quadrilateral, the central quadrilateral is orthodiagonal
only when n = 591. Is this because we only searched the first 1000 values of n?
Expand the search and find other values of n for which the central quadrilateral
is orthodiagonal or prove that X591 is the unique center for which the central
quadrilateral is orthodiagonal when the radiator is the quadrilateral centroid.

10.6. Form quadrilaterals with the Radiator.

In the current study, we formed four triangles using the radiator and two vertices
of the reference quadrilateral. Instead, form four quadrilaterals using the radiator
and three vertices of the reference quadrilateral. Then consider notable quadri-
lateral points in each of the four quadrilaterals formed and investigate the shape
of the quadrilateral determined by these four points.

The following results were found by computer.

Theorem 10.2. Let E be an arbitrary point in the plane of quadrilateral ABCD
(not on the boundary). Let F , G, H, and I be the vertex centroids of quadrilaterals
EBCD, EACD, EABD and EABC, respectively (Figure 39). Then FGHI is
homothetic to ABCD. If P is the center of the homothety and M is the vertex
centroid of ABCD, then P lies on EM and PE/PM = 4.

Figure 39. centroids =⇒ homothetic quadrilaterals
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Theorem 10.3. Let E be an arbitrary point in the plane of cyclic quadrilat-
eral ABCD (not on the boundary). Let F , G, H, and I be the Steiner points
of quadrilaterals EBCD, EACD, EABD and EABC, respectively (Figure 40).
Then FGHI is cyclic. If P is the circumcenter of FGHI and O is the circum-
center of ABCD, then P is the midpoint of EO.

Figure 40. cyclic, Steiner points =⇒ cyclic

Theorem 10.4. Let E be an arbitrary point in the plane of cyclic quadrilat-
eral ABCD (not on the boundary). Let F , G, H, and I be the Poncelet points
of quadrilaterals EBCD, EACD, EABD and EABC, respectively (Figure 41).
Then FGHI is cyclic.

Figure 41. cyclic, Poncelet points =⇒ cyclic

Open Question 10. Are there purely geometric proofs of the previous 3 theorems?

10.7. Work in 3-space.

If point D is moved off the plane of 4ABC, then the reference quadrilateral be-
comes a tetrahedron. Choose a point E inside this reference tetrahedron and draw
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lines to each of the vertices of the reference tetrahedron. This forms four tetra-
hedra with one vertex at E. Locate tetrahedron centers (such as the centroid,
circumcenter, or Monge point) in each of these four tetrahedra. These centers
form a new tetrahedron called the central tetrahedron of the given tetrahedron.
Investigate when the central tetrahedron has a special shape (such as being iso-
dynamic, orthocentric, or isosceles). A list of some special shape tetrahedra can
be found in Section 3 of [9]. The point E can be an arbitrary point or it could be
a notable point associated with the reference tetrahedron. A list of notable points
can be found in Section 4 of [9].

The following result was discovered by computer.

Theorem 10.5. Let E be any point not on the boundary of tetrahedron ABCD.
Let F , G, H, and I be the centroids of tetrahedra EBCD, EACD, EABD and
EABC, respectively. Then tetrahedron FGHI is similar to tetrahedron ABCD.

The line from a vertex of a tetrahedron to the centroid of the opposite face is called
a median. It is well known (Commandino’s Theorem, [1, p. 57]) that the four
medians of a tetrahedron concur at a point called the centroid of that tetrahedron
and that the centroid divides each median in the ratio 1 : 3.

The proof of Theorem 10.5 is similar to the proof of Theorem 4.1 and is omitted.
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