Arithmetic Progressions from Pascal's Triangle

Stanley Rabinowitz

P.O. Box 713

Westford, MA 01886. USA

Write down any row of Pascal's triangle. Below it, write the next row, omitting the initial " 1 ". Divide corresponding entries of the first row by the second. The result is an arithmetic progression.

For example, rows 6 and 7 yield the following arithmetic progression:

$$
\frac{1}{7}, \quad \frac{6}{21}, \quad \frac{15}{35}, \quad \frac{20}{35}, \quad \frac{15}{21}, \quad \frac{6}{7}, \quad \frac{1}{1} .
$$

The proof follows from $\binom{n}{k}=\frac{k+1}{n+1}\binom{n+1}{k+1}$.
Adjacent diagonal lines have a similar property. For example,

$$
\frac{1}{1}, \quad \frac{5}{4}, \quad \frac{15}{10}, \quad \frac{35}{20}, \quad \frac{70}{35}, \quad \ldots
$$

