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1. Introduction

The literature abounds with inequalities involving elements of a triangle, such
as R, r, and s, the triangle’s circumradius, inradius, and semiperimeter. One
sometimes wonders if these inequalities have any geometrical significance.

For example, in 1765, Euler [2] found the following formula for the distance be-
tween the incenter and circumcenter of a triangle in terms of R and r:

d2 = R(R− 2r).

Since this distance cannot be negative, this implies that

R ≥ 2r.

More recently, similar relationships connecting distances between triangle centers
and well-known inequalities have been found.

For example, it was noted ([7, p. 45] and [5]) that Gerretsen’s Inequalities

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2

1This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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follow from the facts that

|GI|2 =
1

9
(s2 − 16Rr + 5r2)

and
|HI|2 = 4R2 + 4Rr + 3r2 − s2

where G, I, and H are the centroid, incenter, and orthocenter of a triangle and
|PQ| denotes the distance between points P and Q.

In 2019, it was noted [6] that Kooi’s Inequality

s2 ≤ R(4R + r)2

2(2R− r)

follows from

|OM |2 = R2 − 2Rs2(2R− r)

(4R + r)2

where O and M are the circumcenter and mittenpunkt of a triangle.

In this paper, we examine the distances between various triangle centers to see if
they imply similar bounds for s2 (and other elements).

2. The Procedure

2.1. Centers used.

Let Xn denote the nth named triangle center as cataloged in the Encyclopedia of
Triangle Centers [4].

We use barycentric coordinates in this study. The barycentric coordinates for 69
triangle centers in terms of the sides of the triangle, a, b, and c, are shown in
Table 1. Only the first barycentric coordinate is given, because if f(a, b, c) is the
first barycentric coordinate for a point P , then the barycentric coordinates for P
are (

f(a, b, c) : f(b, c, a) : f(c, a, b)
)
.

These were derived from [4]. For this study, we included all triangle centers from
the first 200 whose first barycentric coordinate is a polynomial of degree 4 or less.
We also included a few additional triangle centers.
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Table 1: List of Centers Used in this Study

ctr 1st barycentric coordinate

X1 a

X2 1

X3 a2 (a2 − b2 − c2)

X4 (a2 + b2 − c2) (a2 − b2 + c2)

X5 a2b2 + 2c2b2 − c4 + a2c2 − b4

X6 a2

X7 (a + b− c)(a− b + c)

X8 a− b− c

X9 a(a− b− c)

X10 b + c

X11 (b− c)2(b + c− a)

X12 (a + b− c)(a− b + c)(b + c)2

X20 3a4− 2b2a2− 2c2a2− b4− c4 +
2b2c2

X21 a(a + b)(a + c)(b + c− a)

X31 a3

X32 a4

X35 a2 (a2 − b2 − c2 − bc)

X36 a2 (a2 − b2 − c2 + bc)

X37 a(b + c)

X38 a (b2 + c2)

X39 a2 (b2 + c2)

X40 a(a3 + a2b + a2c− ab2 − ac2 −
2abc− b3 − c3 + bc2 + b2c)

X41 a3(b + c− a)

X42 a2(b + c)

X43 a(ab− bc + ac)

X44 a(b + c− 2a)

X45 a(2b + 2c− a)

X46 a(a3 + a2b + a2c− ab2 − ac2 −
b3 − c3 + bc2 + b2c)

X55 a2(b + c− a)

X56 a2(a + b− c)(a− b + c)

X57 a(a + b− c)(a− b + c)

X58 a2(a + b)(a + c)

X63 a (b2 + c2 − a2)

ctr 1st barycentric coordinate

X65 a(a + b− c)(a− b + c)(b + c)

X69 b2 + c2 − a2

X72 a(b + c) (b2 + c2 − a2)

X75 bc

X76 b2c2

X78 a(b + c− a) (b2 + c2 − a2)

X79 (a2+ab+b2−c2)(a2+ac−b2+c2)

X80 (a2−ab+b2−c2)(a2−ac−b2+c2)

X81 a(a + b)(a + c)

X83 (a2 + b2) (a2 + c2)

X85 bc(a + b− c)(a− b + c)

X86 (a + b)(a + c)

X88 a(a + b− 2c)(a− 2b + c)

X89 a(2a + 2b− c)(2a− b + 2c)

X99 (b2 − a2) (c2 − a2)

X141 b2 + c2

X142 ab + ac− (b− c)2

X145 3a− b− c

X190 (a− b)(a− c)

X192 ab− bc + ac

X194 a2b2 + a2c2 − b2c2

X200 a(b + c− a)2

X210 a(b + c)(b + c− a)

X213 a3(b + c)

X238 a(a2 − bc)

X239 a2 − bc

X244 a(b− c)2

X304 bc (b2 + c2 − a2)

X306 (b + c) (b2 + c2 − a2)

X312 bc(b + c− a)

X319 b2 + c2 − a2 + bc

X320 a2 − b2 − c2 + bc

X321 bc(b + c)

X345 (b + c− a) (b2 + c2 − a2)

X346 (a− b− c)2

X350 bc(a2 − bc)
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2.2. Finding the distance.

Using the distance formula between two points in terms of their barycentric co-
ordinates [3], we found formulas for the distance between every pair of points in
Table 1. The resulting formula (in terms of a, b, and c) was converted to an
equivalent formula in terms of R, r, and s by using the Fundamental Theorem
of Symmetric Polynomials [8] to express the formula in terms of the elementary
symmetric polynomials, a+b+c, ab+bc+ca, and abc and then using the following
well-known formulas [7, p. 7]:

a + b + c = 2s

ab + bc + ca = r2 + s2 + 4rR

abc = 4rRs.

These distance formulas are given in the file RrsDistances.pdf included with
the supplementary material associated with this paper. We call these the R-r-s
distance formulas.

2.3. Example 1.

Using the barycentric distance formula, we find that the square of the distance
between X1 and X7 is

|X1X7|2 =
E

(a + b + c) (a2 − 2a(b + c) + (b− c)2)2

where

E = −(a7 − 2a6(b + c) + 5a5bc + a4
(
b3 − 2b2c− 2bc2 + c3

)
+ a3(b− c)2

(
b2 + c2

)
−2a2bc(b−c)2(b+c)−a(b−c)4

(
2b2 + 3bc + 2c2

)
+(b−c)4

(
b3 + 2b2c + 2bc2 + c3

)
).

Writing this in terms of the elementary symmetric polynomials, shows that

|X1X7|2 =
E ′

(a + b + c)5 − 8(ab + ac + bc)(a + b + c)3 + 16(ab + ac + bc)2(a + b + c)

where

E ′ = −48a2b2c2(a + b + c)− 14abc(a + b + c)4 − (a + b + c)7

+ 64abc(a + b + c)2(ab + ac + bc) + 9(a + b + c)5(ab + ac + bc)

− 32abc(ab + ac + bc)2 − 24(a + b + c)3(ab + ac + bc)2

+ 16(a + b + c)(ab + ac + bc)3.

Expressing this in terms of R, r, and s gives

|X1X7|2 =
r2 (r2 + 8rR + 16R2 − 3s2)

(r + 4R)2
.
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2.4. Short polynomials.

The R-r-s distance formulas where the expression is a polynomial with fewer than
4 terms are shown below.

|X1X2|2 =
1

9
(5r2 − 16rR + s2)

|X1X3|2 = R(R− 2r)

|X1X5|2 =
1

4
(R− 2r)2

|X1X8|2 = 5r2 − 16rR + s2

|X1X10|2 =
1

4
(5r2 − 16rR + s2)

|X1X11|2 = r2

|X1X40|2 = 4R(R− 2r)

|X1X80|2 = 4r2

|X1X145|2 = 5r2 − 16rR + s2

|X2X8|2 =
4

9
(5r2 − 16rR + s2)

|X2X10|2 =
1

36
(5r2 − 16rR + s2)

|X2X145|2 =
16

9
(5r2 − 16rR + s2)

|X3X8|2 = (R− 2r)2

|X3X40|2 = R(R− 2r)

|X3X99|2 = R2

|X4X8|2 = 4R(R− 2r)

|X4X145|2 = 4(R− 2r)2

|X5X10|2 =
1

4
R(R− 2r)

|X5X11|2 =
1

4
R2

|X5X40|2 = rR +
25

4
R2 − s2

|X5X80|2 =
1

4
(R + 2r)2

|X8X10|2 =
1

4
(5r2 − 16rR + s2)

|X8X145|2 = 4(5r2 − 16rR + s2)

|X10X145|2 =
9

4
(5r2 − 16rR + s2)

|X11X80|2 = r2

|X20X145|2 = 16R(R− 2r)
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2.5. Perfect squares.

For some of the R-r-s distance formulas, the expression is a perfect square, mean-
ing that the distance between the two centers can be expressed in terms of R, r,
and s without using radicals. These are shown below.

|X1X5| =
R− 2r

2
|X1X11| = r

|X1X80| = 2r

|X3X8| = R− 2r

|X3X99| = R

|X4X145| = 2(R− 2r)

|X5X11| =
R

2

|X5X80| =
R + 2r

2
|X11X80| = r

2.6. Finding the inequalities.

Each R-r-s distance formula gave us an equation of the form

|XiXj|2 = F (R, r, s)

where F is a rational function of R, r, and s. Since the distance between two
points cannot be negative, this give us the inequality

F (R, r, s) ≥ 0.

Factoring F , if one of the factors is obviously nonnegative (using the constraints
s > 0 and R ≥ 2r > 0), then we discarded this factor giving an equivalent
inequality of the form

f(R, r, s) ≥ 0.

If one of the variables (R, r, or s) or a power thereof can be isolated from the
other variables, we then transformed the inequality into the form

un ≥ g(v, w) or un ≤ g(v, w)

where u is the variable being isolated, and v and w are the other variables. Here
n is a positive integer.

If no variable could be isolated from f(R, r, s) ≥ 0, then we moved on to the next
distance formula.

During the transformation process, if we reached an inequality of the form

h(v, w)un ≥ G(v, w),

we examined the factor h(v, w) to determine how to proceed. If h(v, w) was
obviously positive (using the constraints s > 0 and R ≥ 2r > 0), then we formed
the equivalent inequality

un ≥ G(v, w)

h(v, w)
.
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If h(v, w) was obviously negative (using the constraints s > 0 and R ≥ 2r > 0),
then we formed the equivalent inequality

un ≤ G(v, w)

h(v, w)
.

If h(v, w) was neither always positive or always negative for all triangles, then we
moved on to the next distance formula.

2.7. Example 2.

In Example 1, we found that

|X1X7|2 =
r2 (r2 + 8rR + 16R2 − 3s2)

(r + 4R)2
.

Since |X1X7|2 ≥ 0 and clearly r2 and (r + 4R)2 > 0, we get the inequality

r2 + 8rR + 16R2 − 3s2 ≥ 0.

Isolating the s2 term gives

s2 ≤ (r + 4R)2

3
.

2.8. Example 3.

Using the barycentric distance formula, we find that the square of the distance
between X2 and X7 is

|X2X7|2 =
4

9
× E

(a2 − 2ab + b2 − 2ac− 2bc + c2)2

where

E = −a6 + a5b + 5a4b2 − 10a3b3 + 5a2b4 + ab5 − b6 + a5c− 7a4bc + 6a3b2c

+ 6a2b3c− 7ab4c + b5c + 5a4c2 + 6a3bc2 − 18a2b2c2 + 6ab3c2 + 5b4c2 − 10a3c3

+ 6a2bc3 + 6ab2c3 − 10b3c3 + 5a2c4 − 7abc4 + 5b2c4 + ac5 + bc5 − c6.

Converting to R–r–s form gives

|X2X7|2 =
4

9
× 4R2s2 − r4 − 12r3R− r2(48R2 + 5s2)− 8r(8R3 −Rs2)

(r + 4R)2
.

The factors 4
9

and (r + 4R)2 are obviously positive, so this gives us the inequality

4R2s2 − r4 − 12r3R− r2(48R2 + 5s2)− 8r(8R3 −Rs2) ≥ 0.

Collecting terms gives

(2R− r)(5r + 2R)s2 − r(r + 4R)3 ≥ 0.

Isolating the s2 term gives

(2R− r)(5r + 2R)s2 ≥ r(r + 4R)3.

The factor 5r + 2R is obviously positive. The factor 2R − r is positive because
of the constraint R ≥ 2r. We can thus divide both sides of the inequality by the
coefficient of s2 without changing the sense of the inequality. We get

s2 ≥ r(r + 4R)3

(2R− r)(5r + 2R)
.
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3. Inequalities

When reporting on inequalities found, we exclude duplicate inequalities.

3.1. Inequalities for r and R.

Using the procedure described in Section 2, we found the following inequalities
for r and R.

Theorem 1. The following inequalities are true for all triangles.

|X1X2|2 ≥ 0 =⇒ R ≤ 5r2 + s2

16r

|X1X3|2 ≥ 0 =⇒ r ≤ R

2

|X1X3|2 ≥ 0 =⇒ R ≥ 2r

|X5X40|2 ≥ 0 =⇒ r ≥ 4s2 − 25R2

4R

3.2. Upper bounds for s2.

Using the procedure described in Section 2, we found the following upper bounds
for s2 in terms of r and R.

Theorem 2. The following inequalities are true for all triangles.

|X1X4|2 ≥ 0 =⇒ s2 ≤ 3r2 + 4rR + 4R2

|X1X7|2 ≥ 0 =⇒ s2 ≤ 1

3
(r + 4R)2

|X1X79|2 ≥ 0 =⇒ s2 ≤ 1

2
(2r2 + 8rR + 9R2)

|X2X40|2 ≥ 0 =⇒ s2 ≤ 1

5
(36R2 − r2 − 4rR)

|X3X7|2 ≥ 0 =⇒ s2 ≤ R2(r + 4R)2

4r(r + R)

|X3X9|2 ≥ 0 =⇒ s2 ≤ R(r + 4R)2

2(2R− r)

|X3X12|2 ≥ 0 =⇒ s2 ≤ 2r4 + 7r3R + 11r2R2 + 4rR3 + R4

r(2r + R)

|X3X79|2 ≥ 0 =⇒ s2 ≤ 4r4 + 26r3R + 52r2R2 + 30rR3 + 9R4

6r(2r + R)

|X3X210|2 ≥ 0 =⇒ s2 ≤ R(r2 + 4rR− 9R2)

2(r −R)

|X4X12|2 ≥ 0 =⇒ s2 ≤ 2r4 + 13r3R + 26r2R2 + 16rR3 + 4R4

(r + R)(2r + R)

|X4X35|2 ≥ 0 =⇒ s2 ≤ 8r4 + 42r3R + 67r2R2 + 28rR3 + 4R4

(2r + R)(4r + R)
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Upper bounds for s2 (continued):

|X4X63|2 ≥ 0 =⇒ s2 ≤ r4 + 6r3R + 12r2R2 + 8rR3 + 4R4

r(3r + 2R)

|X4X65|2 ≥ 0 =⇒ s2 ≤ r3 + 2r2R− 4R3

r −R

|X4X79|2 ≥ 0 =⇒ s2 ≤ 2r3 + 5r2R− 12rR2 − 36R3

3(2r − 3R)

|X4X142|2 ≥ 0 =⇒ s2 ≤ (r + 4R)2(3r2 + 12rR + 16R2)

(r + 6R)(r + 10R)

|X4X210|2 ≥ 0 =⇒ s2 ≤ −3r3 + 10r2R− 8rR2 − 36R3

r + 5R

|X5X35|2 ≥ 0 =⇒ s2 ≤ 8r4 + 44r3R + 64r2R2 + 8rR3 + R4

4r(2r + R)

|X5X40|2 ≥ 0 =⇒ s2 ≤ 1

4
R(4r + 25R)

|X5X55|2 ≥ 0 =⇒ s2 ≤ 2r4 + 14r3R + 25r2R2 + 2rR3 + R4

2r(r + R)

|X7X35|2 ≥ 0 =⇒ s2 ≤ R(r + 4R)2(2r + 9R

2r + R)(8r + 11R)

|X7X40|2 ≥ 0 =⇒ s2 ≤ −((r + 4R)2(r2 + 4rR− 4R2)

r(5r + 8R))

|X7X55|2 ≥ 0 =⇒ s2 ≤ R(r + 4R)3

(r + R)(4r + 7R)

|X7X79|2 ≥ 0 =⇒ s2 ≤ −(r + 4R)2(2r + 9R)

5(2r − 7R)

|X10X20|2 ≥ 0 =⇒ s2 ≤ 1

15
(21r2 + 64rR + 64R2)

|X12X20|2 ≥ 0 =⇒ s2 ≤ 18r4 + 81r3R + 136r2R2 + 80rR3 + 16R4

3(2r + R)(3r + R)

|X12X40|2 ≥ 0 =⇒ s2 ≤ R(2r3 + 13r2R + 12rR2 + 4R3)

2r(2r + R)

|X20X35|2 ≥ 0 =⇒ s2 ≤ 8r4 + 38r3R + 73r2R2 + 56rR3 + 16R4

(2r + R)(4r + 3R)

|X20X55|2 ≥ 0 =⇒ s2 ≤ 2r4 + 11r3R + 28r2R2 + 32rR3 + 16R4

(r + R)(2r + 3R)

|X20X65|2 ≥ 0 =⇒ s2 ≤ −3r3 − 16rR2 − 16R3

r + 3R

|X20X79|2 ≥ 0 =⇒ s2 ≤ 24r4 + 166r3R + 409r2R2 + 408rR3 + 144R4

(4r + 3R)(10r + 9R)

|X20X142|2 ≥ 0 =⇒ s2 ≤ (r + 4R)2(15r2 + 60rR + 64R2)

(3r + 10R)(7r + 22R)
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Upper bounds for s2 (continued):

|X20X210|2 ≥ 0 =⇒ s2 ≤ −3r3 + 44r2R + 128rR2 + 144R3

5(r − 7R)

|X21X40|2 ≥ 0 =⇒ s2 ≤ −10r3 + 17r2R− 20rR2 − 36R3

2r + 5R

|X35X79|2 ≥ 0 =⇒ s2 ≤ 4r4 + 32r3R + 87r2R2 + 92rR3 + 36R4

(2r + R)(6r + 5R)

|X40X79|2 ≥ 0 =⇒ s2 ≤ R(r3 + 7r2R + 12rR2 + 9R3)

r(4r + 3R)

|X40X142|2 ≥ 0 =⇒ s2 ≤ −(r + 4R)2(r2 + 4rR− 16R2)

(r + 2R)(5r + 14R)

|X40X210|2 ≥ 0 =⇒ s2 ≤ R(5r2 + 20rR + 36R2)

2(−r + 4R)

|X55X79|2 ≥ 0 =⇒ s2 ≤ 4r4 + 38r3R + 126r2R2 + 170rR3 + 81R4

2(r + R)(6r + 7R)

3.3. Lower bounds for s2.

Using the procedure described in Section 2, we found the following lower bounds
for s2 in terms of r and R.

Theorem 3. The following inequalities are true for all triangles.

|X1X2|2 ≥ 0 =⇒ s2 ≥ r(16R− 5r)

|X1X9|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2

r + R

|X1X21|2 ≥ 0 =⇒ s2 ≥ r(6r2 + 19rR + 16R2)

2r + R

|X1X142|2 ≥ 0 =⇒ s2 ≥ r(3r − 4R)(r + 4R)2

(r − 2R)(r + 2R)

|X1X210|2 ≥ 0 =⇒ s2 ≥ rR(7r + 64R)

2(r + 2R)

|X2X7|2 ≥ 0 =⇒ s2 ≥ (r(r + 4R)3

(2R− r)(5r + 2R)

|X2X12|2 ≥ 0 =⇒ s2 ≥ r(2r3 + r2R + 4rR2 − 16R3)

(r −R)(2r + R)

|X2X65|2 ≥ 0 =⇒ s2 ≥ r(15r2 + 28rR + 16R2)

3r + R

|X2X72|2 ≥ 0 =⇒ s2 ≥ r(12r2 + 55rR + 64R2)

2(3r + 2R)

|X2X79|2 ≥ 0 =⇒ s2 ≥ r(8r3 + 38r2R− 3rR2 − 144R3)

(4r − 3R)(14r + 3R)

|X3X63|2 ≥ 0 =⇒ s2 ≥ r3 + 5r2R + 6rR2 −R3

r
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Lower bounds for s2 (continued):

|X3X145|2 ≥ 0 =⇒ s2 ≥ 1

2
(−6r2 + 32rR−R2)

|X5X7|2 ≥ 0 =⇒ s2 ≥ (r + 4R)2(2r2 + 8rR−R2)

6r(4R− r)

|X5X63|2 ≥ 0 =⇒ s2 ≥ R(2r3 + 13r2R + 22rR2 −R3)

2(R− r)(2r + R)

|X5X65|2 ≥ 0 =⇒ s2 ≥ 6r3 + 12r2R + 8rR2 −R3

2r

|X5X72|2 ≥ 0 =⇒ s2 ≥ 6r3 + 26r2R + 28rR2 −R3

2(r + R)

|X5X79|2 ≥ 0 =⇒ s2 ≥ R(8r3 −+6r2R + 96rR2 − 9R3)

8r(−2r + 3R)

|X5X145|2 ≥ 0 =⇒ s2 ≥ 1

6
(−42r2 + 104rR−R2)

|X5X210|2 ≥ 0 =⇒ s2 ≥ 6r3 + 40r2R + 64rR2 − 9R3

2(r + 2R)

|X7X10|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(3r + 16R)

(4R− r)(7r + 4R)

|X7X12|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(2r + 9R)

3(3R− r)(2r + R)

|X7X21|2 ≥ 0 =⇒ s2 ≥ rR(r + 4R)2

(R− r)(4r + R)

|X7X72|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(2r2 + 11rR + 16R2)

4R(r2 + 8rR + 4R2)

|X7X210|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)3(3r + 16R)

(8R− r)(r2 + 15rR + 8R2)

|X8X12|2 ≥ 0 =⇒ s2 ≥ −r(6r3 − 21r2R− 40rR2 − 16R3)

(r + R)(2r + R)

|X8X21|2 ≥ 0 =⇒ s2 ≥ −r(4r3 + 5r2R− 12rR2 − 16R3)

R(r + R)

|X8X35|2 ≥ 0 =⇒ s2 ≥ −r(16r3 + 2r2R− 27rR2 − 16R3)

R(2r + R)

|X8X142|2 ≥ 0 =⇒ s2 ≥ r(36R− 7r)(r + 4R)2

3(r + 2R)(r + 6R)

|X8X210|2 ≥ 0 =⇒ s2 ≥ r(3r2 − 20rR + 16R2)

R− r

|X9X12|2 ≥ 0 =⇒ s2 ≥ rR(r + 4R)2(2r2 + 5rR + 4R2)

2(r + R)(2r + R)(2R2 − r2)

|X9X21|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(2r2 + 5rR + 4R2)

(3r + 2R)(2r2 + rR + 2R2)
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Lower bounds for s2 (continued):

|X9X35|2 ≥ 0 =⇒ s2 ≥ rR2(r + 4R)2

(2r + R)(r2 − rR + R2)

|X9X55|2 ≥ 0 =⇒ s2 ≥ rR(r + 4R)3

2(r + R)(r2 + 2R2)

|X9X65|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(2r2 + 5rR + 4R2)

2R(r2 + 6rR + 2R2)

|X10X55|2 ≥ 0 =⇒ s2 ≥ r(3r3 + 12r2R + 5rR2 − 16R3)

(r −R)(r + R)

|X10X63|2 ≥ 0 =⇒ s2 ≥ r(r3 + 2r2R− 3rR2 − 16R3)

(r −R)(3r + R)

|X10X79|2 ≥ 0 =⇒ s2 ≥ r(4r3 + 40r2R + 123rR2 + 144R3)

(3R− 2r)(10r + 3R)

|X12X21|2 ≥ 0 =⇒ s2 ≥ r(2r2 + 5rR + 4R2)2

(r + R)(2r + R)2

|X12X63|2 ≥ 0 =⇒ s2 ≥ −rR(4r4 + 28r3R + 71r2R2 + 60rR3 + 16R4)

(2r + R)2(r2 − rR−R2))

|X12X142|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(2r2 − 7rR + 4R2)

(r − 2R)(3r − 2R)(2r + R)

|X12X145|2 ≥ 0 =⇒ s2 ≥ −r(42r3 − 75r2R− 76rR2 − 16R3)

(2r + R)(3r + R)

|X21X65|2 ≥ 0 =⇒ s2 ≥ r(8r4 + 34r3R + 53r2R2 + 40rR3 + 16R4)

R(2r2 + 5rR + R2)

|X21X72|2 ≥ 0 =⇒ s2 ≥ r(4r4 + 34r3R + 104r2R2 + 135rR3 + 64R4)

2(r + R)(2r2 + 3rR + 2R2)

|X21X79|2 ≥ 0 =⇒ s2 ≥ r(2r2 + 11rR + 16R2)

6r + R

|X21X145|2 ≥ 0 =⇒ s2 ≥ −r(6r3 − 10r2R− 71rR2 − 64R3)

2(r + R)(r + 2R)

|X21X210|2 ≥ 0 =⇒ s2 ≥ rR(10r3 + 91r2R + 204rR2 + 144R3)

(4r + 3R)(2r2 + rR + 3R2)

|X35X63|2 ≥ 0 =⇒ s2 ≥ r(4r4 + 30r3R + 72r2R2 + 59rR3 + 16R4)

(2r + R)(2r2 + 2rR + R2)

|X35X72|2 ≥ 0 =⇒ s2 ≥ r(4r4 + 24r3R + 51r2R2 + 44rR3 + 16R4)

(2r + R)(2r2 + rR + R2)

|X35X145|2 ≥ 0 =⇒ s2 ≥ −r(24r3 − 106r2R− 83rR2 − 16R3)

(2r + R)(4r + R)

|X35X210|2 ≥ 0 =⇒ s2 ≥ rR(4r3 + 32r2R + 71rR2 + 64R3)

2(2r + R)(2r2 − rR + 2R2)

|X40X145|2 ≥ 0 =⇒ s2 ≥ 1

3
(−7r2 + 52rR− 4R2)
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Lower bounds for s2 (continued):

|X55X72|2 ≥ 0 =⇒ s2 ≥ r(r4 + 7r3R + 20r2R2 + 27rR3 + 16R4)

(r + R)(r2 + rR + R2)

|X63X65|2 ≥ 0 =⇒ s2 ≥ r(2r4 + 10r3R + 23r2R2 + 28rR3 + 16R4)

R(r2 + 3rR + R2)

|X63X79|2 ≥ 0 =⇒ s2 ≥ −rR(8r4 + 74r3R + 240r2R2 + 315rR3 + 144R4)

(2r2 − 3R2)(8r2 + 12rR + 3R2)

|X63X145|2 ≥ 0 =⇒ s2 ≥ −r(7r3 − 28r2R− 96rR2 − 64R3)

(r + 2R)(3r + 2R)

|X63X210|2 ≥ 0 =⇒ s2 ≥ − rR(r + 4R)2

r2 − 3rR−R2

|X65X142|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(6r2 + 9rR + 4R2)

(r + 2R)(2r2 + 7rR + 2R2)

|X72X79|2 ≥ 0 =⇒ s2 ≥ r(8r4 + 62r3R + 183r2R2 + 252rR3 + 144R4)

3R(2r2 + 9rR + 3R2)

|X72X142|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(6r2 + 29rR + 36R2)

(r + 6R)(2r2 + 11rR + 6R2)

|X79X142|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)2(4r3 + 24r2R + 27rR2 − 36R3)

3(2r2 + 9rR− 6R2)(2r2 + 11rR + 2R2)

|X79X145|2 ≥ 0 =⇒ s2 ≥ r(56r3 + 110r2R− 51rR2 − 144R3)

(2r − 3R)(4r + 3R)

|X79X210|2 ≥ 0 =⇒ s2 ≥ −r(12r4 + 118r3R + 436r2R2 + 759rR3 + 576R4)

2(r − 3R)(2r2 + 19rR + 6R2)

|X142X145|2 ≥ 0 =⇒ s2 ≥ −r(39r − 100R)(r + 4R)2

(r + 10R)(3r + 10R)

|X142X210|2 ≥ 0 =⇒ s2 ≥ r(r + 4R)3(6r + 25R)

(r + 10R)(2r2 + 15rR + 10R2)

|X145X210|2 ≥ 0 =⇒ s2 ≥ −r(3r2 + 56rR− 400R2)

5(r + 5R)
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