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Pseudo-Incircles

Stanley Rabinowitz

Abstract. This paper generalizes properties of mixtilinear incircles. Let(S) be
any circle in the plane of triangleABC. Suppose there are circles(Sa), (Sb),
and (Sc) each tangent internally to(S); and (Sa) is inscribed in angleBAC
(similarly for (Sb) and(Sc)). Let the points of tangency of(Sa), (Sb), and(Sc)
with (S) beX, Y , andZ, respectively. Then it is shown that the linesAX, BY ,
andCZ meet in a point.

1. Introduction

A mixtilinear incircle of a triangleABC is a circle tangent to two sides of the
triangle and also internally tangent to the circumcircle of that triangle. In 1999,
Paul Yiu discovered an interesting property of these mixtilinear incircles.

Proposition 1 (Yiu [8]) . If the points of contact of the mixtilinear incircles of
�ABC with the circumcircle are X, Y , and Z , then the lines AX, BY , and
CZ are concurrent (Figure 1). The point of concurrence is the external center of
similitude of the incircle and the circumcircle. 1
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I wondered if there was anything special about the circumcircle in Proposition
1. After a little experimentation, I discovered that the result would remain true if
the circumcircle was replaced with any circle in the plane of�ABC.

Publication Date: March 26, 2006. Communicating Editor: Paul Yiu.
1This is the triangle centerX56 in Kimberling’s list [5].
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Theorem 2. Let (S) be any circle in the plane of �ABC . Suppose that there are
three circles, (Sa), (Sb), and (Sc), each internally (respectively externally) tangent
to (S). Furthermore, suppose (Sa), (Sb), (Sc) are inscribed in ∠BAC , ∠ABC ,
∠ACB respectively (Figure 2). Let the points of tangency of (Sa), (Sb), and (Sc)
with (S) be X, Y , and Z , respectively. Then the lines AX, BY , and CZ are
concurrent at a point P . The point P is the external (respectively internal) center
of similitude of the incircle of �ABC and circle (S).

When we say that a circle isinscribed in an angleABC, we mean that the circle
is tangent to the rays

−−→
BA and

−−→
BC.

Definitions. Given a triangle and a circle, apseudo-incircle of the triangle is a
circle that is tangent to two sides of the given triangle and internally tangent to the
given circle. Apseudo-excircle of the triangle is a circle that is tangent to two sides
of the given triangle and externally tangent to the given circle.

There are many configurations that meet the requirements of Theorem 2. Figure
2 shows an example where(S) surrounds the triangle and the three circles are all
internally tangent to(S). Figure 3a shows an example of pseudo-excircles where
(S) lies inside the triangle. Figure 3b shows an example where(S) intersects the
triangle. Figure 3c shows an example where(S) surrounds the triangle and the
three circles are all externally tangent to(S).
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Figure 3a. Pseudo-excircles
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Figure 3b. Pseudo-excircles

There is another way of viewing Figure 3a. Instead of starting with the trian-
gle and the circle(S), we can start with the other three circles. Then we get the
following proposition.

Proposition 3. Let there be given three circles in the plane, each external to the
other two. Let triangle ABC be the triangle that circumscribes these three circles
(that is, the three circles are inside the triangle and each side of the triangle is
a common external tangent to two of the circles). Let (S) be the circle that is
externally tangent to all three circles. Let the points of tangency of (S) with the
three circles be X, Y , and Z (Figure 3a). Then lines AX, BY , and CZ are
concurrent.
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Figure 3c. Pseudo-excircles
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Figure 4. Pseudo-incircles

Figure 4 also shows pseudo-incircles (as in Figure 2), but in this case, the circle
(S) lies inside the triangle. The other three circles are internally tangent to(S) and
again,AX, BY , andCZ are concurrent. This too can be looked at from the point
of view of the circles, giving the following proposition.

Proposition 4. Let there be given three mutually intersecting circles in the plane.
Let triangle ABC be the triangle that circumscribes these three circles (Figure 4).
Let (S) be the circle that is internally tangent to all three circles. Let the points of
tangency of (S) with the three circles be X, Y , and Z . Then lines AX, BY , and
CZ are concurrent.

We need the following result before proving Theorem 2. It is a generalization of
Monge’s three circle theorem ([7, p.1949]).
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Figure 5. Six centers of similitude
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Proposition 5 ([1, p.188], [2, p.151], [6]). The six centers of similitude of three
circles taken in pairs lie by threes on four straight lines (Figure 5). In particular,
the three external centers of similitude are collinear; and any two internal centers
of similitude are collinear with the third external one.

2. Proof of Theorem 2

Figure 6 shows an example where the three circles are all externally tangent to
(S), but the proof holds for the internally tangent case as well. LetI be the center
of the incircle.
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Figure 6

Consider the three circles(S), (I), and(Sc). The external common tangents of
circles(J) and(Sc) are sidesAC andBC, soC is their external center of simili-
tude. Circles(S) and(Sc) are tangent externally (respectively internally), so their
point of contact,Z, is their internal (respectively external) center of similitude. By
Proposition 5, pointsC andZ are collinear withP , the internal (respectively ex-
ternal) center of similitude of circles(S) and(I). That is, lineCZ passes through
P . Similarly, linesAX andBY also pass throughP .

Corollary 6. In Theorem 2, the points S, P , and I are collinear (Figure 6).

Proof. SinceP is a center of similitude of circles(I) and(S), P must be collinear
with the centers of the two circles. �

3. Special Cases

Theorem 2 holds for any circle,(S), in the plane of the triangle. We can get
interesting special cases for particular circles. We have already seen a special case
in Proposition 1, where(S) is the circumcircle of�ABC.
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3.1. Mixtilinear excircles.

Corollary 7 (Yiu [9]) . The circle tangent to sides AB and AC of �ABC and also
externally tangent to the circumcircle of �ABC touches the circumcircle at point
X. In a similar fashion, points Y and Z are determined (Figure 7). Then the lines
AX, BY , and CZ are concurrent. The point of concurrence is the internal center
of similitude of the incircle and circumcircle of �ABC .2
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Figure 7. Mixtilinear excircles

3.2. Malfatti circles. Consider the Malfatti circles of a triangleABC. These are
three circles that are mutually externally tangent with each circle being tangent to
two sides of the triangle.

Corollary 8. Let (S) be the circle circumscribing the three Malfatti circles, i.e.,
internally tangent to each of them. (Figure 8a). Let the points of tangency of (S)
with the Malfatti circles be X, Y , and Z . Then AX, BY , and CZ are concurrent.

Corollary 9. Let (S) be the circle inscribed in the curvilinear triangle bounded by
the three Malfatti circles of triangle ABC (Figure 8b). Let the points of tangency
of (S) with the Malfatti circles be X, Y , and Z . Then AX, BY , and CZ are
concurrent.

2This is the triangle centerX55 in Kimberling’s list [5]; see also [4, p.75].
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Figure 8a. Malfatti circumcircle
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Figure 8b. Malfatti incircle

3.3. Excircles.

Corollary 10 (Kimberling [3]). Let (S) be the circle circumscribing the three ex-
circles of triangle ABC , i.e., internally tangent to each of them. Let the points of
tangency of (S) with the excircles be X, Y , and Z . (Figure 9). Then AX, BY ,
and CZ are concurrent.

The point of concurrence is known as the Apollonius point of the triangle. It is
X181 in [5]. See also [4, p.102].
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Figure 9. Excircles
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Figure 10. Nine-point circle

If we look at the circle externally tangent to the three excircles, we know by
Feuerbach’s Theorem, that this circle is the nine-point circle of�ABC (the circle
that passes through the midpoints of the sides of the triangle).
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Corollary 11 ([4, p.158]). If the nine point circle of �ABC touches the excircles
at points X, Y , and Z (Figure 10), then AX, BY , and CZ are concurrent.

4. Generalizations

In Theorem 2, we required that the three circles(Sa), (Sb), and(Sc) be inscribed
in the angles of the triangle. In that case, linesASa, BSb, andCSc concur at the
incenter of the triangle. We can use the exact same proof to handle the case where
the three linesASa, BSb, andCSc meet at an excenter of the triangle. We get the
following result.

Theorem 12. Let (S) be any circle in the plane of �ABC . Suppose that there
are three circles, (Sa), (Sb), and (Sc), each tangent internally (respectively exter-
nally) to (S). Furthermore, suppose (Sa) is tangent to lines AB and AC; (Sb) is
tangent to lines BC and BA; and (Sc) is tangent to lines CA and CB. Let the
points of tangency of (Sa), (Sb), and (Sc) with (S) be X, Y , and Z , respectively.
Suppose lines ASa, BSb, and CSc meet at the point J , one of the excenters of
�ABC (Figure 11). Furthermore, assume that sides BA and BC of the triangle
are the external common tangents between excircle (J) and circle (Sa); similarly
for circles (Sb), and (Sc). Then AX, BY , and CZ are concurrent at a point P .
The point P is the external (respectively internal) center of similitude of circles (J)
and (S). The points J , P , and S are collinear.
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Figure 11. Pseudo-excircles

Figure 12 illustrates the case when(S) is tangent internally to each of(Sa),
(Sb), (Sc).
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Figure 12. Pseudo-incircles

Examining the proof of Theorem 2, we note that at each vertex of the triangle,
we have found that the line from that vertex to the point of contact of the circle in-
scribed in that angle and circle(S) passes through a fixed point (one of the centers
of similitude of (S) and the incircle of the triangle). We note that the result and
proof would be the same for a polygon provided that the polygon had an incircle.
This gives us the following result.

Theorem 13. Let A1A2A3 . . . An be a convex n-gon circumscribed about a circle
(J). Let (S) be any circle in the interior of this n-gon. Suppose there are n circles,
(S1), (S2), . . . , (Sn) each tangent externally to (S) such that for i = 1, 2, . . . , n,
circle (Si) is also inscribed in angle Ai−1AiAi+1 (where A0 = An and An+1 =
A1). Let Xi be the point of tangency of circles (Si) and (S) (Figure 13). Then
the lines AiXi, i = 1, 2, . . . , n are concurrent. The point of concurrence is the
internal center of similitude of the circles (S) and (J).

In order to generalize Theorem 2 to three dimensions, we need to first note that
Proposition 5 generalizes to 3 dimensions.

Theorem 14. The six centers of similitude of three spheres taken in pairs lie by
threes on four straight lines. In particular, the three external centers of similitude
are collinear; and any two internal centers of similitude are collinear with the third
external one.

Proof. Consider the plane through the centers of the three spheres. This plane
passes through all 6 centers of similitude. The plane cuts each sphere in a circle.
Thus, on this plane, Proposition 5 applies, thus proving that the result holds for the
spheres as well. �
Theorem 15. Let T = A1A2A3A4 be a tetrahedron. Let (S) be any sphere in
the interior of T (or let (S) be any sphere surrounding T ). Suppose there are four
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Figure 13. Pseudo-excircles in a pentagon

spheres, (S1), (S2), (S3), and (S4) each tangent internally (respectively exter-
nally) to (S) such that sphere (Si) is also inscribed in the trihedral angle at vertex
Ai. Let Xi be the point of tangency of spheres (Si) and (S). Then the lines AiXi,
i = 1, 2, 3, 4, are concurrent. The point of concurrence is the external (respectively
internal) center of similitude of sphere (S) and the sphere inscribed in T .

The proof of this theorem is exactly the same as the proof of Theorem 2, replac-
ing the reference to Proposition 5 by Theorem 14.

It is also clear that this result generalizes toEn.
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