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1. Historical Results.

In 1974, Millin [13] published a problem stating that

∞∑

n=0

1
F2n

=
7 −

√
5

2
. (1)

This spurred a flurry of activity: [1], [3], [4], [5], [6], [7], [8], [17]. Most investigators,
however, overlooked the fact that Lucas studied such sums back in 1878. He showed in
[11], equation (125), that if k �= 0, then

N∑

n=1

Qk2n−1

uk2n

=
Qkuk(2N−1)

ukuk2N

(2)

where un is a second order linear recurrence defined by

un+2 = Pun+1 − Qun, u0 = 0, u1 = 1.

If we use the identity Qn−1um−n = unum−1 − umun−1, we can express formula (2) in
the form

N∑

n=1

Qk2n−1

uk2n

= Q

[
uk2N−1

uk2N

− uk−1

uk

]

. (3)

If Q = −1, as is the case for Fibonacci, Lucas, and Pell numbers, then equation (3)
becomes

N∑

n=0

1
uk2n

=
1 + uk−1

uk
+

1 − (−1)k

u2k
− uk2N−1

uk2N

(4)

where we have handled the terms when n is 0 and 1 specially. For all subsequent terms,
the exponent of Q is even and hence the numerator is 1. An equivalent formula found by
Greig [6] is

N∑

n=0

1
uk2n

=
1
uk

+
1 + u2k−1

u2k
− uk2N−1

uk2N

. (5)

When 〈un〉 is the Fibonacci sequence, equation (4) becomes the result found by Greig
in [5]. Hoggatt and Bicknell [8] found an equivalent result, expressing their answer in terms
of Fibonacci and Lucas numbers. This generalized the result they gave in [7]. Brady [2]
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found an equivalent result, expressing his answer in terms of the golden ratio. When 〈un〉
is the Pell sequence, equation (4) becomes the result found by Horadam [10]. In equation
(3), if we let Q = 1, we get the results found by Melham and Shannon [12].

Lucas [11] also found that if k �= 0 and p �= 0, then

N∑

n=0

Qkpn

uk(p−1)pn

ukpnukpn+1
=

Qkuk(pN+1−1)

ukukpN+1
. (6)

This, again, was overlooked by later researchers. Formula (6) is equivalent to equation (6)
of Bruckman and Good [3]. If we let P = x and Q = −1, then we get a result found by
Popov [16], equation (4), for the Fibonacci polynomials. This, in turn, generalizes results
for Fibonacci numbers found by Bergum and Hoggatt [1]. Brady [2] found an equivalent
result for Fibonacci numbers, expressing his answer in terms of the golden ratio.

2. New Results.

Instead of the sequence 〈un〉, we can study the sequence 〈wn〉 defined by

wn+2 = Pwn+1 − Qwn, w0, w1 arbitrary.

In order that no denominator be 0, we will make the assumption that wn �= 0 for n > 0.
We also assume that k is a fixed positive integer and that P 2 �= 4Q. Finally, we let

α =
P +

√
P 2 − 4Q

2
and β =

P −
√

P 2 − 4Q

2

and note that αβ = Q.
In [10], a formula for

∑
1/wk2n is claimed to be found for the case where Q = −1.

However, this formula is not correct unless w0 = 0. For k = 1, the supposed formula is

N∑

n=0

1
w2n

=
1
w1

+
1 + w1

w2
− w2N−1

w2N

.

A counterexample to this claim is the Lucas sequence with N = 2. Perhaps the author
inadvertently omitted the hypothesis w0 = 0, in which case the above formula and the
formulas given on page 112 of [10] are valid. These results are then a special case of the
following.

Theorem 1. If w0 = 0, then

N∑

n=1

Qk2n−1

wk2n

=
Qkwk(2N−1)

wkwk2N

. (7)
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Proof: We use the identity wn = w1un −Qw0un−1 which comes from [9]. Letting w0 = 0,
we find that wn = w1un for all n. Substituting un = wn/w1 in equation (2) gives us the
desired result.

Corollary 1. If w0 = 0 and Q = 1, then

N∑

n=1

1
wk2n

=
wk(2N−1)

wkwk2N

= w1

[
wk2N−1

wk2N

− wk−1

wk

]

. (8)

Corollary 2. If w0 = 0 and Q = −1, then

N∑

n=1

1
wk2n

=
1 − (−1)k

w2k
+

wk(2N−1)

wkwk2N

=
1 + w2k−1

w2k
− wk2N−1

wk2N

. (9)

In a similar manner, formula (6) continues to hold when u is replaced by w, provided
that w0 = 0.

Sums to infinity can also be obtained by letting N → ∞ in any of the above formulas.
We use the following fact, which is taken from [15].

Lemma. For all integers r,

lim
N→∞

uN−r

uN
=

{
αr, if |β/α| < 1,
βr, if |β/α| > 1.

When w0 = 0, so that wn is proportional to un, we may replace u by w in the above
lemma. Letting N → ∞ in formula (7) and recalling that αβ = Q, we get the following.

Theorem 2. If w0 = 0, then

∞∑

n=1

Qk2n−1

wk2n

=
{

βk/wk, if |β/α| < 1,
αk/wk, if |β/α| > 1.

(10)

If 〈wn〉 is the Fibonacci sequence, then formula (10) reduces to formula (1), and this
agrees with the value found by Lucas in 1878: formula (127) of [11].
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