A Triad of Circles Associated with a Triangle

Ercole Suppa ${ }^{a}$ and Stanley Rabinowitz ${ }^{b}$
${ }^{a}$ Via B. Croce 54, 64100 Teramo, Italia
e-mail: ercolesuppa@gmail.com
web: http://www.esuppa.it/
${ }^{b} 545$ Elm St Unit 1, Milford, New Hampshire 03055, USA
e-mail: stan.rabinowitz@comcast.net ${ }^{2}$
web: http://www.StanleyRabinowitz.com/

Abstract

We study some properties of a triad of circles associated with a triangle. Each circle is inside the triangle, tangent to two sides of the triangle, and externally tangent to the circle on the third side as diameter. In particular, we find a nice relation involving the radii of the inner and outer Apollonius circles of the three circles in the triad.

Keywords. Paasche point, Apollonius circle, barycentric coordinates, Mathematica.

Mathematics Subject Classification (2020). 51-02, 51M04.

1. Introduction

Notation. Throughout this paper, we will use the following notation, where $\triangle A B C$ is a fixed acute triangle in the plane. We let $a=B C, b=C A, c=A B, r$ is the inradius of $\triangle A B C, R$ is the circumradius of $\triangle A B C, p=\frac{a+b+c}{2}, \Delta=[A B C]$ is the area of the triangle, and $S=2 \Delta$. We also let I denote the incenter of $\triangle A B C$.

The semicircle erected inwardly on side $B C$ will be named ω_{a} as shown in Figure 1 (left). Semicircles ω_{b} and ω_{c} are defined similarly. The circle inside $\triangle A B C$, tangent to sides $A B$ and $A C$, and externally tangent to semicircle ω_{a} will be named γ_{a}. Circles γ_{b} and γ_{c} are defined similarly. The radii of circles γ_{a}, γ_{b}, and γ_{c} are denoted by ρ_{a}, ρ_{b}, and ρ_{c}, respectively. The centers of these circles are named D, E, and F, respectively, as shown in Figure 1 (right).
For purposes of this paper, these three circles will be called the triad of circles associated with $\triangle A B C$.

[^0]

Figure 1.
This triad of circles appears in a Sangaku described in [3] and reprinted in [6, problem 6]. The statement in the Sangaku is given as Theorem 1.1.

Theorem 1.1. For the triad of circles associated with $\triangle A B C$, we have

$$
r=\frac{1}{2}\left(\rho_{a}+\rho_{b}+\rho_{c}+\sqrt{\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}}\right) .
$$

A proof of this result can be found in [10]. A variant on this result when the triangle is not acute can also be found in [10].
It is the purpose of this paper to give other properties of such a triad of circles.

2. Known Results

Before giving new results, we summarize some of the properties already known about the triad of circles. The following five theorems come from [10].
Theorem 2.1. For the triad of circles associated with $\triangle A B C$, we have

$$
\rho_{a}=r\left(1-\tan \frac{A}{2}\right) .
$$

Similar formulas hold for ρ_{b} and ρ_{c}.
Theorem 2.2. Let P and Q be the feet of the perpendiculars from D and I to side $A C$, respectively. Then $P Q=I Q$. (Figure 2)

Figure 2. red lengths are equal

Theorem 2.3. The lengths of the common external tangents between any two circles of the triad are equal. The common length is $2 r$. (Figure 3)

Figure 3. blue lengths are equal
Theorem 2.4. The six points of contact of the triad of circles associated with $\triangle A B C$ lie on a circle with center I and radius $r \sqrt{2}$. (Figure (4)

Figure 4.
This circle will be called the contact circle.
The following corollary follows immediately from Theorem 2.4.
Corollary 2.1. In Figure 5 showing the contact circle and the incircle, the green area is equal to the blue area.

Figure 5. green area $=$ blue area

Theorem 2.5. For the triad of circles associated with $\triangle A B C$, we have

$$
\begin{equation*}
\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}=\frac{r^{2}(p-4 R-r)^{2}}{p^{2}} \tag{1}
\end{equation*}
$$

The following result comes from [4] where it is stated that the result is due to Tomasz Cieśla.

Theorem 2.6. Let T_{a}, T_{b}, and T_{c} be the touch points of the circles in the triad with their corresponding semicircles as shown in Figure 6. Then $A T_{a}, B T_{b}$, and $C T_{c}$ are concurrent.

Figure 6.
The point of concurrence is catalogued as point X_{1123} in the Encyclopedia of Triangle Centers [4. Since reference [4] does not include a proof of this result, we will give our own proof later in Section 5 of this paper.
The point X_{1123} is known as the Paasche point of the triangle because Paasche proved the following result in [7].

Theorem 2.7. Congruent circles with centers A_{1} and A_{2} touch each other externally at point A^{\prime} outside $\triangle A B C$. Circle $\left(A_{1}\right)$ is tangent to $A B$ and $B C$. Circle $\left(A_{2}\right)$ is tangent to $A C$ and $B C$. Points B^{\prime} and C^{\prime} are defined similarly (Figure 7). Then $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are concurrent.

Figure 7.

Remark. The same result is true if the pairs of congruent circles are inside the triangle instead of outside. Figure 8 illustrates this. (Only the two congruent circles tangent to side $B C$ are shown.) This result comes from [11, Art. 3.5.4, ex. 4c].

Figure 8.
The Paasche point can also be characterized as follows according to [2].
Theorem 2.8. In $\triangle A B C$, let ω_{a}, ω_{b}, and ω_{c} be the circles constructed using sides $B C, C A$, and $A B$, respectively, as diameters. Let Ω be the circle internally tangent to ω_{a}, ω_{b}, and ω_{c}. Let A^{\prime} be the touch point between ω_{a} and Ω. Points B^{\prime} and C^{\prime} are defined similarly (Figure (9). Then $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are concurrent at X_{1123}, the Paasche point of $\triangle A B C$.

Figure 9.

A circle that is tangent to three given circles is called an Apollonius circle of those three circles.
If all three circles lie inside an Apollonius circle, then the Apollonius circle is called the outer Apollonius circle of the three circles. The outer Apollonius circle surrounds the three circles and is internally tangent to all three.

If all three circles lie outside an Apollonius circle, then the Apollonius circle is called the inner Apollonius circle of the three circles. The inner Apollonius circle will either be internally tangent to the three given circles or it will be externally tangent to all the circles. The following theorem comes from [5].

Theorem 2.9. For the triad of circles associated with $\triangle A B C$, the inner Apollonius circle of $\gamma_{a}, \gamma_{b}, \gamma_{c}$, is internally tangent to the inner Apollonius circle of ω_{a}, ω_{b}, ω_{c} (Figure 10).

Remark. The inner Apollonius circle of $\gamma_{a}, \gamma_{b}, \gamma_{c}$ is known as the 1st Miyamoto-Moses-Apollonius circle and the outer Apollonius circle of $\gamma_{a}, \gamma_{b}, \gamma_{c}$ is known as the 2nd Miyamoto-Moses-Apollonius circle (see [5]).

Figure 10.

3. Metric Relationships involving $\rho_{a}, \rho_{b}, \rho_{c}$

In addition to Theorem 1.1 and Theorem 2.5, the following symmetric relationship involving ρ_{a}, ρ_{b}, and ρ_{c} holds.

Theorem 3.1. For the triad of circles associated with $\triangle A B C$, we have

$$
\rho_{a} \rho_{b}+\rho_{b} \rho_{c}+\rho_{c} \rho_{a}-2 r\left(\rho_{a}+\rho_{b}+\rho_{c}\right)+2 r^{2}=0 .
$$

Proof. From Theorem 2.1, we have $\rho_{a}=r\left(1-\tan \frac{A}{2}\right), \rho_{b}=r\left(1-\tan \frac{B}{2}\right)$, and $\rho_{c}=r\left(1-\tan \frac{C}{2}\right)$. Substituting these values into the expression

$$
\rho_{a} \rho_{b}+\rho_{b} \rho_{c}+\rho_{c} \rho_{a}-2 r\left(\rho_{a}+\rho_{b}+\rho_{c}\right)+2 r^{2}
$$

and simplifying (using Mathematica), shows that the expression is equal to

$$
-r^{2} \cos \left(\frac{A+B+C}{2}\right) \sec \frac{A}{2} \sec \frac{B}{2} \sec \frac{C}{2} .
$$

Since $A+B+C=\pi$, this expression is equal to 0 .
Theorem 3.2. For the triad of circles associated with $\triangle A B C$, we have

$$
p\left(r-\rho_{a}\right)\left(r-\rho_{b}\right)\left(r-\rho_{c}\right)=r^{4}
$$

Proof. This result follows from Theorem 2.1 and the trigonometric identity

$$
\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}=\frac{r}{p}
$$

which comes from [1, p. 358].
Theorem 3.3. For the triad of circles associated with $\triangle A B C$, we have

$$
\begin{equation*}
\rho_{a}=\frac{\Delta-(p-b)(p-c)}{p} \tag{2}
\end{equation*}
$$

Similar formulas hold for ρ_{b} and ρ_{c}.
Proof. Using Theorem 2.1 and the well-known identities

$$
\tan \frac{A}{2}=\frac{r}{p-a} \quad \text { and } \quad r=\frac{\Delta}{p}
$$

we get

$$
\begin{align*}
\rho_{a} & =r\left(1-\frac{r}{p-a}\right)=r-\frac{r^{2}}{p-a}=\frac{\Delta}{p}-\frac{\Delta^{2}}{p^{2}(p-a)} \tag{3}\\
& =\frac{\Delta}{p}-\frac{p(p-a)(p-b)(p-c)}{p^{2}(p-a)}=\frac{\Delta-(p-b)(p-c)}{p} . \tag{4}
\end{align*}
$$

This complete the proof.

4. Barycentric coordinates of centers of $\gamma_{a}, \gamma_{b}, \gamma_{c}$

Theorem 4.1. The barycentric coordinates of the center of γ_{a} are

$$
D=a S+2(p-b)(p-c)(b+c): b S-2 b(p-b)(p-c): c S-2 c(p-b)(p-c)
$$

Proof. Let y be the distance between D and the sideline $B C$. Summing the areas of triangles $D B C, D C A$ and $D A B$ we obtain

$$
\begin{equation*}
a y+b \rho_{a}+c \rho_{a}=2 \Delta \tag{5}
\end{equation*}
$$

Plugging (2) into (5) we get

$$
\begin{gather*}
a y+(b+c) \cdot \frac{\Delta-(p-b)(p-c)}{p}=S \\
a y+(b+c) \cdot \frac{S-2(p-b)(p-c)}{2 p}=S \\
2 p a y+(b+c) S-2(p-b)(p-c)(b+c)=(a+b+c) S \\
2 p a y=2(p-b)(p-c)(b+c)+a S \\
a y=\frac{a S+2(p-b)(p-c)(b+c)}{2 p} \tag{6}
\end{gather*}
$$

By using (2) and (6), we obtain

$$
\begin{aligned}
D & =\Delta D B C: \triangle D C A: D A B=a y: b \rho_{a}: c \rho_{a} \\
& =a S+2(p-b)(p-c)(b+c): b S-2 b(p-b)(p-c): c S-2 c(p-b)(p-c)
\end{aligned}
$$

which are the desired barycentric coordinates.

Theorem 4.2. The radical center of circles γ_{a}, γ_{b} and γ_{c} is the Gergonne point of $\triangle A B C$.

Proof. Using Mathematica and the package baricentricas.n ${ }^{3}$, it can be proved that
(a) the radical axis of γ_{a} and γ_{b} is $(p-a) x-(p-b) y=0$;
(b) the radical axis of γ_{b} and γ_{c} is $(p-b) y-(p-c) z=0$;
(c) the radical axis of γ_{c} and γ_{a} is $(p-a) x-(p-c) z=0$.

An easy verification shows that these radical axes concur at

$$
G_{e}=(p-b)(p-c):(p-c)(p-a):(p-a)(p-b),
$$

which is the Gergonne point of $\triangle A B C$.

We can also give a purely geometric proof.

Proof. Let the incircle touch the sides of $\triangle A B C$ at Q_{a}, Q_{b}, and Q_{c} as shown in Figure 11. From Theorem 2.2, $Q_{a} E_{a}=Q_{a} F_{a}=r$. Thus, the tangents from Q_{a} to γ_{b} and γ_{c} are equal. Since $A D_{c}=A D_{b}$ and $D_{c} E_{c}=D_{b} F_{b}$ (Theorem 2.3), this means $A E_{c}=A F_{b}$. Hence the tangents from A to γ_{b} and γ_{c} are equal. The radical axis of circles γ_{b} and γ_{c} is the locus of points such that the lengths of the tangents to the two circles from that point are equal. The radical axis of two circles is a straight line. Therefore, the radical axis of circles γ_{b} and γ_{c} is $A Q_{a}$, the Gergonne cevian from A.

Similarly, the radical axis of circles γ_{a} and γ_{c} is the Gergonne cevian from B and the radical axis of circles γ_{a} and γ_{b} is the Gergonne cevian from C. Hence, the radical center of the triad of circles is the intersection point of the three Gergonne cevians, namely, the Gergonne point of $\triangle A B C$.

Figure 11.

[^1]
5. A concurrence at the Paasche point.

In (4] the following result is stated.
Theorem 5.1. Suppose that $A B C$ is an acute triangle. Let γ_{a} be the circle touching $C A$ and $A B$ from inside of $A B C$ and also externally tangent to the semicircle of diameter $B C$, in point T_{a}. Define T_{b} and T_{c} cyclically (Figure 12). Then $A B C$ is perspective to $T_{a} T_{b} T_{c}$, and the perspector is X_{1123}, the Paasche point of $\triangle A B C$.

Figure 12.

Proof. We use homogeneous barycentric coordinates with respect to the triangle $A B C$. Let M_{a} be the midpoint of $B C$. The point T_{a} divides the segment joining the centers of the circles γ_{a} and ω_{a} in the ratio $\rho_{a}: \frac{a}{2}$. Using theorem 4.1 we have that the sum of coordinates of D is

$$
\begin{aligned}
& a S+2(p-b)(p-c)(b+c)+b S-2 b(p-b)(p-c)+c S-2 c(p-b)(p-c) \\
= & (a+b+c) S+2(p-b)(p-c)(b+c)-2(b+c)(p-b)(p-c) \\
= & (a+b+c) S=2 p S .
\end{aligned}
$$

Therefore, by writing the coordinates of M_{a} in the form $M_{a}=0: p S: p S$, we get

$$
T_{a}=\frac{a}{2} \cdot D+\rho_{a} \cdot M_{a} .
$$

It follows that the first coordinate of $T_{a}=x_{a}: y_{a}: z_{a}$ is given by

$$
\begin{aligned}
x_{a} & =\frac{a}{2}(a S+2(p-b)(p-c)(b+c))+\rho_{a} \cdot 0 \\
& =\frac{a}{2}(a S+2(p-b)(p-c)(b+c)) .
\end{aligned}
$$

In a similar way we find that

$$
\begin{aligned}
y_{a} & =\frac{a}{2}(b S-2 b(p-b)(p-c))+\rho_{a} p S \\
& =\frac{1}{2}(S-2(p-b)(p-c))(a b+S)
\end{aligned}
$$

and

$$
\begin{aligned}
z_{a} & =\frac{a}{2}(c S-2 c(p-b)(p-c))+\rho_{a} p S \\
& =\frac{1}{2}(S-2(p-b)(p-c))(a c+S) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
T_{a}= & a^{2} S+2 a(p-b)(p-c)(b+c): \\
& (S-2(p-b)(p-c))(a b+S): \\
& (S-2(p-b)(p-c))(a c+S) .
\end{aligned}
$$

The equation of line $A T_{a}$ is $z_{a} y+y_{a} z=0$, i.e.

$$
A T_{a}: \quad(a c+S) y-(a b+S) z=0
$$

The cyclic substitution $a \rightarrow b, b \rightarrow c, c \rightarrow a$ gives

$$
\begin{array}{ll}
B T_{b}: & (b c+S) x-(a b+S) z=0 \\
C T_{c}: & (b c+S) x-(a c+S) y=0
\end{array}
$$

A direct verification shows that $A T_{a}, B T_{b}$, and $C T_{c}$ concur at the Paasche point

$$
X_{1123}=(a b+S)(a c+S):(a b+S)(b c+S):(a c+S)(b c+S)
$$

6. Apollonius circles of $\gamma_{a}, \gamma_{b}, \gamma_{c}$

In order to find the radii of the inner and outer Apollonius circles tangent to γ_{a}, γ_{b}, and γ_{c} we will use the method explained in [9] and some preliminary lemmas. The more complicated calculations are performed with Mathematica.

Lemma 6.1. If $u=E F, v=D F, w=D E$ are the distances between the centers of the circles γ_{a}, γ_{b}, and γ_{c}, we have

$$
\begin{aligned}
& u^{2}=\frac{a(b+c-a)\left(a^{2}+a b+a c-2 b^{2}+4 b c-2 c^{2}\right)}{(a+b+c)^{2}} \\
& v^{2}=\frac{b(a-b+c)\left(-2 a^{2}+a b+4 a c+b^{2}+b c-2 c^{2}\right)}{(a+b+c)^{2}}, \\
& w^{2}=\frac{c(a+b-c)\left(-2 a^{2}+4 a b+a c-2 b^{2}+b c+c^{2}\right)}{(a+b+c)^{2}} .
\end{aligned}
$$

Proof. From Theorem 3.3, we have

$$
\rho_{a}=\frac{\Delta-(p-b)(p-c)}{p},
$$

and similarly

$$
\rho_{b}=\frac{\Delta-(p-a)(p-c)}{p}, \quad \rho_{c}=\frac{\Delta-(p-a)(p-b)}{p} .
$$

Assume, without loss of generality, that $\rho_{b}<\rho_{c}$. Let E^{\prime} be the foot of the perpendicular from E to $F F_{a}$. Applying the Pythagorean Theorem to triangle

Figure 13.
$E F E^{\prime}$ (see figure 13), taking into account that $E E^{\prime}=E_{a} F_{a}=2 r$ and $F E^{\prime}=$ $\rho_{c}-\rho_{b}$, we obtain

$$
\begin{aligned}
u^{2} & =E F^{2}=E_{a} F_{a}^{2}+\left(F F_{a}-E E_{a}\right)^{2}=(2 r)^{2}+\left(\rho_{c}-\rho_{b}\right)^{2} \\
& =4 r^{2}+\left(\frac{(p-a)(p-c)-(p-a)(p-b)}{p}\right)^{2} \\
& =4 \cdot \frac{\Delta^{2}}{p^{2}}+\frac{(p-a)^{2}(b-c)^{2}}{p^{2}} \\
& =\frac{4 p(p-a)(p-b)(p-c)+(p-a)^{2}(b-c)^{2}}{p^{2}} \\
& =\frac{a(b+c-a)\left(a^{2}+a b+a c-2 b^{2}+4 b c-2 c^{2}\right)}{(a+b+c)^{2}} .
\end{aligned}
$$

The formulas relating to v^{2} and w^{2} can be proved in a similar way.
Lemma 6.2. If θ, φ, ψ are three positive real numbers such that $\theta+\varphi+\psi=360^{\circ}$, then we have

$$
\cos ^{2} \theta+\cos ^{2} \varphi+\cos ^{2} \psi-2 \cos \theta \cos \varphi \cos \psi=1
$$

Proof. Using the addition formulas we have

$$
\begin{aligned}
& \cos ^{2} \theta+\cos ^{2} \varphi+\cos ^{2} \psi-2 \cos \theta \cos \varphi \cos \psi \\
= & \cos ^{2} \theta+\cos ^{2} \varphi+\cos ^{2}\left(360^{\circ}-\theta-\varphi\right)-2 \cos \theta \cos \varphi \cos \left(360^{\circ}-\theta-\varphi\right) \\
= & \cos ^{2} \theta+\cos ^{2} \varphi+\cos ^{2}(\theta+\varphi)-2 \cos \theta \cos \varphi \cos (\theta+\varphi) \\
= & \cos ^{2} \theta+\cos ^{2} \varphi+(\cos \theta \cos \varphi-\sin \theta \sin \varphi)^{2}-2 \cos \theta \cos \varphi(\cos \theta \cos \varphi-\sin \theta \sin \varphi) \\
= & \cos ^{2} \theta+\cos ^{2} \varphi+\cos ^{2} \theta \cos ^{2} \varphi+\sin ^{2} \theta \sin ^{2} \varphi-2 \cos ^{2} \theta \cos ^{2} \varphi \\
= & \cos ^{2} \theta+\cos ^{2} \varphi+\sin ^{2} \theta \sin ^{2} \varphi-\cos ^{2} \theta \cos ^{2} \varphi \\
= & \cos ^{2} \theta\left(1-\cos ^{2} \varphi\right)+\cos ^{2} \varphi+\sin ^{2} \theta \sin ^{2} \varphi \\
= & \sin ^{2} \varphi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\cos ^{2} \varphi \\
= & \sin ^{2} \varphi+\cos ^{2} \varphi=1 .
\end{aligned}
$$

Theorem 6.1. Let ρ_{i} be the radius of the inner Apollonius circle externally tangent to γ_{a}, γ_{b}, and γ_{c} (see figure 14). Then

$$
\rho_{i}^{2}=\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2} .
$$

Figure 14.

Proof. Let U be the center of the inner Apollonius circle and let $x=\rho_{i}$. Let us consider the angles $\varphi_{a}=\angle E U F, \varphi_{b}=\angle F U D$, and $\varphi_{c}=\angle D U E$.
Since $\varphi_{a}+\varphi_{b}+\varphi_{c}=360^{\circ}$ by Lemma 6.2 we have

$$
\begin{equation*}
\cos ^{2} \varphi_{a}+\cos ^{2} \varphi_{b}+\cos ^{2} \varphi_{c}-2 \cos \varphi_{a} \cos \varphi_{b} \cos \varphi_{c}=1 \tag{7}
\end{equation*}
$$

If we substitute

$$
\begin{equation*}
t_{a}=\sin ^{2} \frac{\varphi_{a}}{2}, \quad t_{b}=\sin ^{2} \frac{\varphi_{b}}{2}, \quad t_{c}=\sin ^{2} \frac{\varphi_{c}}{2} \tag{8}
\end{equation*}
$$

in (7), we obtain

$$
\begin{equation*}
t_{a}^{2}+t_{b}^{2}+t_{c}^{2}-2\left(t_{a} t_{b}+t_{b} t_{c}+t_{c} t_{a}\right)+4 t_{a} t_{2} t_{c}=0 \tag{9}
\end{equation*}
$$

Since $U D=x+\rho_{a}, U E=x+\rho_{b}, U F=x+\rho_{c}$, the Law of Cosines yields

$$
\begin{align*}
\cos \varphi_{a} & =\frac{\left(x+\rho_{b}\right)^{2}+\left(x+\rho_{c}\right)^{2}-u^{2}}{2\left(x+\rho_{b}\right)\left(x+\rho_{c}\right)} \Rightarrow \\
t_{a} & =\frac{1-\cos \varphi_{1}}{2}=\frac{u^{2}-\left(\rho_{b}-\rho_{c}\right)^{2}}{4\left(x+\rho_{b}\right)\left(x+\rho_{c}\right)}, \tag{10}
\end{align*}
$$

and analogously

$$
\begin{equation*}
t_{b}=\frac{v^{2}-\left(\rho_{c}-\rho_{a}\right)^{2}}{4\left(x+\rho_{c}\right)\left(x+\rho_{a}\right)}, \quad t_{c}=\frac{w^{2}-\left(\rho_{a}-\rho_{b}\right)^{2}}{4\left(x+\rho_{a}\right)\left(x+\rho_{b}\right)} . \tag{11}
\end{equation*}
$$

Plugging (10) and (11) in (9) and using Lemma 6.1, after a straightforward calculation, we get an equation of the form $f(x) g(x)=0$, where

$$
\begin{equation*}
f(x)=6(a+b+c) x+2 a b+2 b c+2 a c-a^{2}-b^{2}-c^{2}+12 \Delta \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x)=2(a+b+c) x+a^{2}+b^{2}+c^{2}-2 a b-2 a c-2 b c+4 \Delta . \tag{13}
\end{equation*}
$$

The root of $\sqrt{12)}$ is

$$
x=\frac{a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a-12 \Delta}{6(a+b+c)}=-\frac{2 r(4 R+r)+6 \Delta}{6 p}<0 .
$$

The root of (13) is

$$
x=\frac{-a^{2}-b^{2}-c^{2}+2 b a+2 b c+2 c a-4 \Delta}{2(a+b+c)}=\frac{r(4 R+r-p)}{p}>0 .
$$

Therefore, discarding the negative root, we have $\rho_{i}=\frac{r(4 R+r-p)}{p}$. Hence, taking into account equation (1), we get

$$
\rho_{i}^{2}=\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2} .
$$

Corollary 6.1. In Figure 15 showing the triad of circles associated with $\triangle A B C$ and the inner Apollonius circle externally tangent to each circle in the triad, we have that the sum of the yellow areas is equal to the green area.

Figure 15. yellow area $=$ green area
Theorem 6.2. Let ρ_{o} be the radius of the outer Apollonius circle internally tangent to $\gamma_{a}, \gamma_{b}, \gamma_{c}$ (see Figure 16). We have

$$
\rho_{o}=\frac{2}{3}\left(\rho_{a}+\rho_{b}+\rho_{c}\right)+\sqrt{\rho_{a}^{2}+\rho_{b}^{2}+\rho_{c}^{2}} .
$$

Figure 16.
Proof. The proof is similar to that of Theorem 6.1.
Combining Theorem 1.1, Theorem 6.1, and Theorem 6.2, we get the following nice results.

Corollary 6.2. The inradius r and the radii ρ_{i}, ρ_{o} of the Apollonius circles satisfy the relation

$$
3 \rho_{o}=\rho_{i}+4 r .
$$

Corollary 6.3. The radii ρ_{i}, ρ_{o} of the Apollonius circles satisfy the relation

$$
3 \rho_{o}=2\left(\rho_{a}+\rho_{b}+\rho_{c}\right)+3 \rho_{i} .
$$

Remark. The centers U and V of the inner and outer Apollonius circles of γ_{a}, γ_{b}, and γ_{c} are known ETC centers, namely $U=X(52805)$ and $V=X(52806)$.
Theorem 6.3. Let ω_{i} be the inner Apollonius circle, externally tangent to γ_{a}, γ_{b}, and γ_{c}. Let U_{a} be the touch point between ω_{i} and γ_{a}. Define U_{b} and U_{c} cyclically. Let ω_{o} be the outer Apollonius circle, internally tangent to γ_{a}, γ_{b}, and γ_{c}. Let V_{a} be the touch point between ω_{o} and γ_{a}. Define V_{b} and V_{c} cyclically. Let G_{e} be the Gergonne point of $\triangle A B C$. Then the points A, V_{a}, U_{a}, and G_{e} are collinear. Similarly, the points B, V_{b}, U_{b}, and G_{e} are collinear; and the points C, V_{c}, U_{c}, and G_{e} are collinear (Figure 17).

Figure 17.
Proof. Clearly, by symmetry, it is enough to prove that A, V_{a}, U_{a}, and G_{e} are collinear. From Theorem4.2, we know that G_{e} is the radical center of γ_{a}, γ_{b}, and γ_{c}. Hence, from the Gergonne construction of Apollonius circles, it follows that U_{a}, V_{a}, and G_{e} are collinear. Therefore, it remains to prove that A, U_{a}, and G_{e} are collinear. To this end we use barycentric coordinates. We have $A=1: 0: 0$ and $G_{e}=\frac{1}{p-a}: \frac{1}{p-b}: \frac{1}{p-c}$. The point U_{a} divides the segment $D U$ joining the centers of the circles γ_{a} and ω_{i} in the ratio $\rho_{a}: \rho_{i}$. By using Mathematica, we find that

$$
U_{a}=\frac{-a}{(p-b)(p-c)-\Delta}: \frac{1}{p-b}: \frac{1}{p-c} .
$$

The points A, U_{a}, and G_{e} are collinear because

$$
\left|\begin{array}{ccc}
1 & 0 & 0 \\
\frac{-a}{(p-b)(p-c)-\Delta} & \frac{1}{p-b} & \frac{1}{p-c} \\
\frac{1}{p-a} & \frac{1}{p-b} & \frac{1}{p-c}
\end{array}\right|=0 .
$$

This completes the proof.

Remark. We could also show that the lines $A U_{a}, B U_{b}$, and $C U_{c}$ are concurrent by using Theorem 2 of [8]. That theorem also shows that the point of concurrence, G_{e}, is the internal center of similitude of the incircle of $\triangle A B C$ and the circle ω_{i}.

Corollary 6.4. Let U_{a} be the touch point between γ_{a} and ω_{i} (Figure 18). Then the tangents from U_{a} to γ_{b} and γ_{c} are equal.

Figure 18. red tangents are equal
Proof. From Theorem 6.3, $A U_{a}$ is the Gergonne cevian from vertex A. But from the proof of Theorem 4.2, this Gergonne cevian is the radical axis of circles γ_{b} and γ_{c}. Thus the two tangents have the same length.
Theorem 6.4. Let $\omega_{i}=\left(U, \rho_{i}\right), \omega_{o}=\left(V, \rho_{o}\right)$ be the inner and outer Apollonius circles externally and internally tangent to γ_{a}, γ_{b}, and γ_{c}, respectively. Let U_{a}, V_{a} be the touch point of γ_{a} with ω_{i} and ω_{o} respectively. Define $U_{b}, U_{c}, V_{b}, V_{c}$ cyclically. Let $I=X_{1}, G_{e}=X_{7}$ be the incenter and the Gergonne points of $\triangle A B C$ respectively (Figure 19). Then U and V lie on the Soddy line $I G_{e}$ and $U I: I V=3$.

Figure 19.

Proof. This follows directly from the barycentric coordinates for U and V.

7. Other properties

Theorem 7.1. For the triad of circles associated with $\triangle A B C$, let $x=\rho_{a}, y=\rho_{b}$, and $z=\rho_{c}$. Let u, v, w be the radii of the greatest circles inscribed in the circular segments shown in Figure 20. Then

$$
x w+y u+z v=x v+z u+y w .
$$

Figure 20.

Proof. From Theorem 2.1, we have

$$
x=r\left(1-\tan \frac{A}{2}\right), \quad y=r\left(1-\tan \frac{B}{2}\right), \quad z=r\left(1-\tan \frac{C}{2}\right) .
$$

Figure 21.
On the other hand, we have (see Figure 21)

$$
u=\frac{1}{2} M N=\frac{1}{2} B M \cdot \tan \frac{A}{2}=\frac{a}{4} \tan \frac{A}{2}
$$

and similarly

$$
v=\frac{b}{4} \tan \frac{B}{2}, \quad w=\frac{c}{4} \tan \frac{C}{2} .
$$

Observe that

$$
\tan \frac{A}{2}=\frac{r}{s-a}=\frac{\Delta}{s(s-a)}, \quad \tan \frac{B}{2}=\frac{\Delta}{s(s-b)}, \quad \tan \frac{C}{2}=\frac{\Delta}{s(s-c)}
$$

so, using the Heron formula $\Delta^{2}=s(s-a)(s-b)(s-c)$, we get

$$
\begin{aligned}
u(y-z) & =\frac{a}{4} \tan \frac{A}{2}\left(r\left(1-\tan \frac{B}{2}\right)-r\left(1-\tan \frac{C}{2}\right)\right) \\
& =\frac{a r}{4} \tan \frac{A}{2}\left(\tan \frac{C}{2}-\tan \frac{B}{2}\right) \\
& =\frac{a r}{4}\left(\tan \frac{A}{2} \tan \frac{C}{2}-\tan \frac{A}{2} \tan \frac{B}{2}\right) \\
& =\frac{a r}{4}\left(\frac{\Delta}{s(s-a)} \frac{\Delta}{s(s-c)}-\frac{\Delta}{s(s-a)} \frac{\Delta}{s(s-b)}\right) \\
& =\frac{a r}{4}\left(\frac{s-b}{s}-\frac{s-c}{s}\right) \\
& =\frac{r}{4} \cdot \frac{a c-a b}{s} .
\end{aligned}
$$

Similarly, we have

$$
v(z-x)=\frac{r}{4} \cdot \frac{b a-b c}{s}, \quad w(x-y)=\frac{r}{4} \cdot \frac{c b-c a}{s} .
$$

Therefore

$$
\begin{aligned}
x w+y u+z v-(v+z u+y w) & =u(y-z)+v(z-x)+w(x-y) \\
& =\frac{r}{4} \cdot \frac{a c-a b}{s}+\frac{r}{4} \cdot \frac{b a-b c}{s}+\frac{r}{4} \cdot \frac{c b-c a}{s} \\
& =\frac{r}{4} \cdot \frac{a c-a b+b a-b c+c b-c a}{s}=0 .
\end{aligned}
$$

This completes the proof.

References

[1] Titu Andreescu and Oleg Mushkarov, Topics in Geometric Inequalities, XYZ Press, 2019.
[2] Francisco Javier Garcia Capitán, Problem 2428, Romantics of Geometry Facebook Group, October 2018.
https://www.facebook.com/groups/parmenides52/posts/1926266464153717/
[3] Honma, ed., Zoku Kanji Sampō, Tohoku University Digital Collection, 1849.
[4] Clark Kimberling, Encyclopedia of Triangle Centers, entry for X(1123), the Paasche Point. https://faculty.evansville.edu/ck6/encyclopedia/ETCPart2.html\#X1123
[5] Clark Kimberling, Encyclopedia of Triangle Centers, preamble to entry X(52805), Miyamoto-Moses Points.
https://faculty.evansville.edu/ck6/encyclopedia/ETCPart27.html\#X52805
[6] Hiroshi Okumura, Problems 2023-1, Sangaku Journal of Mathematics, 7(2023)9-12.
http://www.sangaku-journal.eu/2023/SJM_2023_9-12_problems_2023-1.pdf
[7] Ivan Paasche, Aufgabe P933: Ankreispaare, Praxis der Mathematik 1(1990)40.
[8] Stanley Rabinowitz, Pseudo-Incircles, Forum Geometricorum, 6(2006)107-115. https://forumgeom.fau.edu/FG2006volume6/FG200612.pdf
[9] Milorad R. Stevanović, Predrag B. Petrović, and Marina M. Stevanović, Radii of Circles in Apollonius's Problem, Forum Geometricorum, 17(2017)359-372. https://forumgeom.fau.edu/FG2017volume17/FG201735.pdf
[10] Ercole Suppa and Marian Cucoanes, Solution of Problem 2023-1-6, Sangaku Journal of Mathematics, 7(2023)21-28.
http://www.sangaku-journal.eu/2023/SJM_2023_21-28_Suppa, Cucoanes.pdf
[11] Paul Yiu, Introduction to the Geometry of the Triangle, December 2012.
http://math.fau.edu/Yiu/YIUIntroductionToTriangleGeometry121226.pdf

Errata. On page 66, in equation (9), " t_{2} " should be " t_{b} " and in equation (10), $" \cos \varphi_{1}$ " should be " $\cos \varphi_{a}$ ".

[^0]: ${ }^{1}$ This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
 ${ }^{2}$ Corresponding author

[^1]: ${ }^{3}$ The package baricentricas.m written by F.J.G.Capitan can be freely downloaded from http://garciacapitan.epizy.com/baricentricas/

